
NOAA Technical Memorandum OAR GSD-45

COMMUNITY HWRF USERS GUIDE V3.6A

October 2014

THE DEVELOPMENT TESTBED CENTER

C. Holt
L. Bernardet
T. Brown
R. Yablonsky

Earth System Research Laboratory
Global System Division
Boulder, Colorado
October 2014

doi:10.7289/V5BC3WG5

http://dx.doi.org/10.7289/V5BC3WG5

NOAA Technical Memorandum OAR GSD-45

COMMUNITY HWRF USERS GUIDE V3.6A

Christina Holt1
Ligia Bernardet1
Timothy Brown1
Richard Yablonsky2

1 Cooperative Institute for Research in Environmental Sciences (CIRES), Developmental Testbed Center and NOAA/ESRL/GSD

2 University of Rhode Island

UNITED STATES
DEPARTMENT OF COMMERCE

Penny Pritzker
Secretary

NATIONAL OCEANIC AND
ATMOSPHERIC ADMINISTRATION

Dr. Kathryn Sullivan
Acting Under Secretary for Oceans
And Atmosphere/acting Administrator	

Office of Oceanic and
Atmospheric Research

Dr. Robert Detrick
Assistant Administrator

doi:10.7289/V5BC3WG5

http://dx.doi.org/10.7289/V5BC3WG5

Community HWRF
Users’ Guide V3.6a

September 2014
(Revised October 2014)

Christina Holt, Ligia Bernardet, and Timothy Brown
NOAA/ESRL/GSD, Developmental Testbed Center and CIRES/CU

Richard Yablonsky
University of Rhode Island

Please send questions to: wrfhelp@ucar.edu

mailto:wrfhelp@ucar.edu

Contents

Preface vi

1. HWRF System Introduction 1
1.1. HWRF System Overview . 1
1.2. HWRF Development and Support . 4
1.3. HWRF Source Code Directory Structure . 4

1.3.1. HWRF Utilities Programs and Scripts 5
1.3.2. MPIPOM-TC Ocean Model . 6
1.3.3. NCEP Coupler . 7
1.3.4. GFDL Vortex Tracker . 7
1.3.5. WRFV3 – Atmospheric Model . 7
1.3.6. WPSV3 – WRF Preprocessor . 8
1.3.7. UPP – Unified Post-Processor . 8
1.3.8. GSI – Gridpoint Statistical Interpolation 9
1.3.9. HWRF Run . 9

2. Software Installation 10
2.1. Introduction . 10
2.2. Obtaining the HWRF Source Code . 11
2.3. Setting up HWRF . 11
2.4. System Requirements, Libraries, and Tools 12

2.4.1. Compilers . 12
2.4.2. netCDF, pnetCDF, and MPI . 13
2.4.3. LAPACK and BLAS . 14

2.5. Included Libraries . 14
2.5.1. Component Dependencies . 15

2.6. Building WRF-NMM . 16
2.6.1. Set Environment Variables . 16
2.6.2. Configure and Compile WRF-NMM 17
2.6.3. Configure and Compile: Idealized Tropical Cyclone WRF-NMM . . . 18

2.7. Building HWRF-utilities . 20
2.7.1. Set Environment Variables . 20
2.7.2. Configure and Compile . 21

ii

Contents

2.8. Building MPIPOM-TC . 23
2.8.1. Set Environment Variables . 23
2.8.2. Configure and Compile . 24

2.9. Building GFDL Vortex Tracker . 25
2.9.1. Set Environment Variables . 25
2.9.2. Configure and Compile . 26

2.10. Building the NCEP Coupler . 27
2.10.1. Configure and Compile . 27

2.11. Building WPS . 28
2.11.1. Set Environment Variables . 28
2.11.2. Configure and Compile . 28

2.12. Building UPP . 30
2.12.1. Set Environment Variables . 30
2.12.2. Configure and Compile . 31

2.13. Building GSI . 32
2.13.1. Set Environment Variables . 33
2.13.2. Configure and Compile . 33

3. Running HWRF 35
3.1. HWRF Scripts Overview . 35
3.2. Defining an Experiment . 36

3.2.1. Overview of hwrf.conf . 36
3.2.2. Overview of hwrf_basic.conf . 36
3.2.3. Overview of hwrf_input.conf . 37
3.2.4. Overview system.conf . 37
3.2.5. Overview of global_vars.ksh . 38

3.3. Input Data and Fix Directory Structure . 38
3.4. Production Directory Structure . 43
3.5. Scripts for Running HWRF . 45

3.5.1. Submitting a Job . 45
3.5.2. Running HWRF End-to-End . 47

3.6. Running HWRF in Non-operational Configurations 47
3.6.1. Running without Spectral Files (GRIB Only) 48
3.6.2. Running an Uncoupled Forecast . 48
3.6.3. Running without GSI . 48
3.6.4. Running without Relocation . 48

4. HWRF Preprocessing System 50
4.1. Introduction . 50
4.2. Scripts . 53

4.2.1. Overview of exhwrf_launch.py 56
4.2.2. Overview of the Init Scripts: exhwrf_init.py and Wrappers . . . 58
4.2.3. Overview of Initialization Modules 58

5. Vortex Relocation 68
5.1. Introduction . 68
5.2. Scripts . 72

5.2.1. Overview of exhwrf_relocate.py 72
5.2.2. Overview of the Relocate Modules 72

iii

Contents

6. Data Assimilation 81
6.1. Introduction . 81
6.2. Scripts . 82

6.2.1. Overview of exhwrf_gsi.py . 82
6.2.2. Overview of the GSI Module . 83

7. Merge 84
7.1. Introduction . 84
7.2. Scripts . 84

7.2.1. Overview of exhwrf_merge.py . 84
7.2.2. Overview of Merge Module . 85

8. Ocean Initialization for MPIPOM-TC 87
8.1. Introduction . 87
8.2. Scripts . 87

8.2.1. Overview of exhwrf_ocean_init.py 87
8.2.2. Overview of Ocean Init Modules . 88

9. Forecast Model 92
9.1. Introduction . 92
9.2. Scripts . 92

9.2.1. Overview of exhwrf_forecast.py 93
9.2.2. Overview of the Forecast Module . 93

10.HWRF Post Processor 97
10.1. Introduction . 97
10.2. Scripts . 97

10.2.1. Overview of exhwrf_unpost.py 98
10.2.2. Overview of exhwrf_post.py . 98
10.2.3. Overview of UPP Python Modules 98

11.Forecast Products 100
11.1. Introduction . 100
11.2. Scripts . 101

11.2.1. Overview of exhwrf_products.py 102
11.2.2. Additional Tracking Utilities . 107

11.3. How to Plot the Tracker Output Using ATCF_PLOT 109

12.HWRF Idealized Tropical Cyclone Simulation 111
12.1. Introduction . 111
12.2. How to Use HWRF for Idealized Tropical Cyclone Simulations 112

12.2.1. Source Code . 112
12.2.2. Input Files and Datasets . 112
12.2.3. General Instructions for Running the Executables 113
12.2.4. Running WPS to Create the ICs and LBCs 113
12.2.5. Running ideal.exe and wrf.exe 115

A. Example of Computational Resources 117

iv

Contents

B. Example WRF Namelist 119

C. Sample GFDL Vortex Tracker Namelist 123

v

Preface

Meaning of typographic changes and symbols

Table 1 describes the type changes and symbols used in this book.

Typeface or Symbol Meaning Example
AaBbCc123 The names of commands, Edit your .bashrc

files, and directories; Use ls -a to list all files.
on-screen computer output host$ You have mail!.

AaBbCc123 What you type, contrasted host$ su
with on-screen computer
output

AaBbCc123 Command line placeholder: To delete a file, type
replace with a real name rm filename
or value

Table 1: Typographic Conventions

vi

1
HWRF System Introduction

1.1 HWRF System Overview

The Weather Research and Forecast (WRF) system for hurricane prediction (HWRF) is an op-
erational model implemented at the National Centers for Environmental Prediction (NCEP)
of the National Weather Service (NWS) to provide numerical guidance to the National Hur-
ricane Center for the forecasting of tropical cyclones’ track, intensity, and structure. HWRF
v3.6a and this Users’ Guide contain the capabilities of the operational 2014 implementation
of HWRF.

The HWRF model is a primitive equation non-hydrostatic coupled atmosphere-ocean model
with the atmospheric component formulated with 61 levels in the vertical, and a 2 hPa model
top. The atmospheric model uses the Non-hydrostatic Mesoscale Model (NMM) dynamic
core of the WRF model (WRF-NMM), with a parent and two nest domains. The parent
domain covers roughly 80◦ x 80◦ on a rotated latitude/longitude E-staggered grid. The
location of the parent domain is determined based on the initial position of the storm and
on the National Hurricane Center (NHC) forecast of the 72-h position, if available. The
middle nest domain, of about 12◦ x 12◦, and the inner nest domain, of about 7.1◦ x 7.1◦, move
along with the storm using two-way interactive nesting. The stationary parent domain has
a grid spacing of 0.18◦ (about 27 km) while the middle nest spacing is 0.06◦ (about 9 km)
and the inner nest spacing is 0.02◦ (about 3 km). The dynamic time steps are 45, 15, and 5
s, respectively, for the parent, middle nest, and inner nest domains.

The model physics originated primarily from the Geophysical Fluid Dynamics Laboratory
(GFDL) hurricane model, and includes a simplified Arakawa-Schubert scheme for cumulus
parameterization and a Ferrier cloud microphysics package for explicit moist physics. The
vertical diffusion scheme is based on Troen and Mahrt’s non-local scheme. The Monin-

1

1. HWRF System Introduction

Obukhov scheme is used for surface flux calculations, which also employs an improved
air-sea momentum flux parameterization in strong wind conditions, and a one-layer slab
land model. Radiation effects are evaluated by the GFDL scheme, which includes diurnal
variations and interactive effects of clouds. The HWRF physics includes parameterization of
dissipative heating.

Model initialization is comprised of both a vortex improvement procedure and data as-
similation. The NCEP Global Forecast System (GFS) analysis is used to generate the initial
conditions (ICs) for the hurricane model parent domain in the operational configuration. On
the inner 9-km and 3-km nests, the NCEP Global Data Assimilation System (GDAS) 6-hour
forecast initialized 6 hours prior to the HWRF analysis is interpolated to the appropriate
grid and is used as the first guess.

The analysis is modified by first separating the vortex and environment fields of the respec-
tive first guess on each domain, i.e. the GFS vortex is separated from the environment on the
parent domain, the GDAS vortex is removed from the environment on the inner domains. A
new vortex is then incorporated onto the environment field. The new vortex that is added
to the environment depends on the observed intensity of the cyclone, and on the existence
of a previous HWRF forecast. The new vortex may derive from a bogus procedure, from
the 6-h forecast of the HWRF model initialized 6-h previously, or from GDAS. In any case,
the vortex is modified so that the initial storm position, structure, and intensity conform to
the NHC storm message. A new feature for HWRF v3.6a allows for seamlessly cycling from
NHC areas of investigation (Invests) to numbered storms.

The first guess with an improved vortex is modified using the HWRF Data Assimilation
System (HDAS) by ingesting observations in a three-dimensional (3D) hybrid ensemble-
variational (VAR) data assimilation system called Gridpoint Statistical Interpolation (GSI).
The ensemble information is obtained from the GFS ensemble. HWRF assimilates conven-
tional observations, reconnaissance dropsondes, tail Doppler Radar, and satellite observa-
tions. Satellite observations utilized by HWRF include radiances from infrared instruments
(HIRS, AIRS, IASI, and GOES sounders) and microwave instruments (AMSU-A, MHS, and
ATMS), satellite-derived wind, and Global Positioning System (GPS) radio occultation bend-
ing angle. First Guess at Appropriate Time (FGAT) is used to make sure that GSI uses
innovations calculated by comparing observations with corresponding model analysis fields
valid at the time when the observations were collected. The GFS forecast fields are used to
provide lateral boundary conditions every 6 hours during the forecast.

The time integration is performed with a forward-backward scheme for fast waves, an im-
plicit scheme for vertically propagating sound waves and the Adams-Bashforth scheme for
horizontal advection and for the Coriolis force. In the vertical, the hybrid pressure-sigma
coordinate is used. Horizontal diffusion in based on a 2nd order Smagorinsky-type, for
more details see the HWRF Scientific Documentation at http:\dtcenter.org/HurrWRF/
users/.

The Community HWRF model can be used for any oceanic basin. In the North Atlantic
and Eastern North Pacific basins, for which NHC is responsible, the atmospheric model is
coupled with an ocean model, the MPIPOM-TC. This ocean model implements the Message
Passaging Interface (MPI) to run a parallel version of the Princeton Ocean Model (POM)
for Tropical Cyclones (POM-TC). The POM was developed at Princeton University. At the

2

http:\dtcenter.org/HurrWRF/users/
http:\dtcenter.org/HurrWRF/users/

1. HWRF System Introduction

University of Rhode Island (URI), the POM was coupled to the GFDL and WRF models.
In both basins, MPIPOM-TC is run in three dimensions with 1/12◦ (approximately 9 km)
horizontal grid spacing. The MPIPOM-TC is configured with 23 vertical levels in the North
Atlantic and Eastern North Pacific basins. In the other basins, HWRF is configured to run
with its atmospheric component only.

The MPIPOM-TC is initialized by a diagnostic and prognostic spin up of the ocean circula-
tions using climatological ocean data. For storms located in the western part of the Atlantic
basin, the initial conditions are enhanced with real-time sea surface temperature (SST), sea
surface height data, and the assimilation of oceanic “features”. During the ocean spin up,
realistic representations of the structure and positions of the Loop Current, Gulf Stream,
and warm- and cold-core eddies are incorporated using a features-based data assimilation
technique developed at URI.

The atmospheric and oceanic components are interactively coupled with a Message Passing
Interface (MPI)-based coupler, which was developed at NCEP’s Environmental Modeling
Center (EMC). The atmospheric and oceanic components exchange information through
the coupler; the ocean sends the SST to the atmosphere; the atmosphere receives the SST
and sends the surface fluxes, including sensible heat flux, latent heat flux and short-wave
radiation to the ocean, and so on. The frequency of information exchange is 9 minutes.

HWRF is suitable for use in tropical applications including real-time NWP, forecast research,
physics parameterization research, air-sea coupling research, and teaching. Additionally,
HWRF v3.6a includes the capability to perform idealized tropical cyclone simulations. The
HWRF system support to the community by the Developmental Testbed Center (DTC) in-
cludes the following four main modules.

• HWRF atmospheric components
– WRF-NMM (which has tropical physics schemes and a vortex-following moving
nest)

– WRF Preprocessing System (WPS)
– Vortex initialization
– GSI
– Unified Post-Processor (UPP)
– GFDL Vortex Tracker

• HWRF oceanic components
– MPIPOM-TC model
– Ocean initialization

• Atmosphere-Ocean Coupler
• HWRF Run Module

New in HWRF v3.6a is a complete rewrite of the scripts used to run HWRF. The new
set of scripts, written in the Python language, constitutes unification between the DTC
and EMC scripts. They are currently being employed in developmental HWRF configu-
rations undergoing testing at EMC and are scheduled for first operational implementation
at NCEP in the 2015 version of HWRF. Due to the novel nature of these scripts, users
should expect some additions and changes in the upcoming months. Those will be posted
in the Frequently-Asked-Questions (FAQ) or Known Issues sections of the DTC website at
http://dtcenter.org/HurrWRF/users.

3

http://dtcenter.org/HurrWRF/users

1. HWRF System Introduction

1.2 HWRF Development and Support

All HWRF components are under the Subversion revision control system. The code reposito-
ries are hosted and maintained as community codes at the National Center for Atmospheric
Research (NCAR), except for GSI, which is housed at the National Oceanic and Atmospheric
Administration (NOAA). An HWRF code management protocol has been established for
proposing HWRF-related modifications to the software, whether the modifications are sim-
ply updates to the current features, bug fixes, or the addition of new features. HWRF code
development must be carried out in the branches of the repositories and frequently synchro-
nized with the trunks. Proposed software modifications must be thoroughly tested prior to
being committed to the code repository to protect the integrity of the evolving code base.

HWRF is being actively developed and advanced. In the future, more components will be
coupled into the HWRF system, including wave, hydrology, storm surge, and inundation
components.

The HWRF modeling system software is in the public domain and is freely available for
community use. Information about obtaining the codes, datasets, documentations, and
tutorials can be found at http://www.dtcenter.org/HurrWRF/users and in the following
chapters of this Users’ Guide. Direct all questions to wrfhelp@ucar.edu. Please also contact
this email if you would like more information on the protocols for HWRF development.

1.3 HWRF Source Code Directory Structure

The HWRF system source code has the following nine components.

• WRF Atmospheric Model
• WPS
• UPP
• GSI
• HWRF Utilities
• MPIPOM-TC
• GFDL Vortex Tracker
• NCEP Atmosphere-Ocean Coupler
• HWRF Run Component

The code for all components can be obtained by downloading the following tar files from
the DTC website (see Chapter 2 for installation information).

• HWRF_v3.6a_WRFV3.tar.gz
• HWRF_v3.6a_WPSV3.tar.gz
• HWRF_v3.6a_UPP.tar.gz
• HWRF_v3.6a_GSI.tar.gz
• HWRF_v3.6a_hwrf-utilities.tar.gz
• HWRF_v3.6a_gfdl-vortextracker.tar.gz
• HWRF_v3.6a_ncep-coupler.tar.gz

4

http://www.dtcenter.org/HurrWRF/users
mailto:wrfhelp@ucar.edu

1. HWRF System Introduction

• HWRF_v3.6a_pomtc.tar.gz
• HWRF_v3.6a_hwrfrun.tar.gz

First expand HWRF_v3.6a_hwrfrun.tar.gz in a user-defined HWRF top directory. Once
completed, change directory to ${SCRATCH}/hwrfrun/sorc to expand the remaining tar
files. The following directories should be present once all files are expanded.

• WRFV3 – Weather Research and Forecasting model
• WPSV3 – WRF Preprocessing System
• UPP – Unified Post-Processor
• GSI – Gridpoint Statistical Interpolation 3D-VAR data assimilation
• hwrf-utilities – Vortex initialization, utilities, tools, and supplemental libraries
• gfdl-vortextracker – Vortex tracker
• ncep-coupler – Ocean/atmosphere coupler
• pomtc – Tropical cyclone version of MPIPOM

For the remainder of this document, we assume that the tar files have been expanded un-
der ${SCRATCH}/hwrfrun/sorc, where ${SCRATCH} is an environment variable that de-
scribes the location of the directory in which you installed the HWRF components.

The directory trees for these nine components are listed as follows. Note that these are the
directories after the code is compiled. Before compilation not all of these directories are
present.

1.3.1 HWRF Utilities Programs and Scripts
hwrf-utilities/

arch/ ... architecture compiling options
clean................................script to clean created files and executables
compile...script to compile component
configure..................................... script to create the configure file
exec/...executables
libs/ libraries: blas, sp, sfcio, bacio, w3, and bufr
makefile..top level makefile
pure-openmp.inc
tools/............................source code for tools to run the HWRF system

Makefile.....................................makefile for ocean model code
bufr_remorest/
grbindex/
hwrf_afos/
hwrf_atcf_to_stats/
hwrf_aux_rw/
hwrf_bdy_update/
hwrf_binary_grads/
hwrf_bin_io/
hwrf_blend_gsi/
hwrf_combinetrack/

5

1. HWRF System Introduction

hwrf_data_flag/
hwrf_data_remv/
hwrf_gettrk/
hwrf_gridgenfine/
hwrf_htcfstats/
hwrf_netcdf_grads/
hwrf_nhc_products/
hwrf_prep_hybrid/
hwrf_read_indi/
hwrf_readtdrstmid/
hwrf_readtdrtime/
hwrf_supvit/
hwrf_swath/
hwrf_wrfout_newtime/
mdate/
mpiserial/
ndate/
nhour/
serpoe/
wave_sample/
wgrib/

vortex_init......................source code for the HWRF vortex initialization
Makefile.......................................makefile for vortex_init code
hwrf_anl_bogus/
hwrf_anl_cs/
hwrf_anl_step2/
hwrf_create_nest/
hwrf_create_trak_fnl/
hwrf_create_trak_guess/
hwrf_diffwrf_3dvar/
hwrf_guess/
hwrf_pert_ct/
hwrf_set_ijstart/
hwrf_split/
interpolate/
merge_nest/

1.3.2 MPIPOM-TC Ocean Model
pomtc

arch/ ... architecture compiling options
clean................................script to clean created files and executables
compile...script to compile component
configure..................................... script to create the configure file

makefile..makefile for tools code
ocean_exec/.......................................ocean model executables
ocean_init/.........source code for generating ocean model initial conditions

Makefile.........................makefile for the ocean initialization code

6

1. HWRF System Introduction

date2day/
day2date/
fbtr/
gdm3/
getsst/
idtr/
ncda/
pom/
sharp_mcs_rf_l2m_rmy5/
tran/

ocean_main/........................source code for the ocean forecast model
Makefile..............................makefile for the ocean model code
pom/

ocean_plot/..............................software used to plot ocean output

1.3.3 NCEP Coupler
ncep-coupler/

arch/ ... architecture compiling options
clean................................script to clean created files and executables
compile...script to compile component
configure..................................... script to create the configure file
cpl_exec/..coupler executable
hwrf_wm3c/...source code for the coupler
makefile..top level makefile

1.3.4 GFDL Vortex Tracker
gfdl-vortextracker/

arch/ ... architecture compiling options
clean................................script to clean created files and executables
compile...script to compile component
configure..................................... script to create the configure file
makefile..top level makefile
trk_exec/..executables
trk_plot/..plot scripts and data
trk_src/.....................................source code for the vortex tracker

1.3.5 WRFV3 – Atmospheric Model
WRFV3/

Makefile.....................................makefile used to compile WRFV3
Registry/...WRFV3 Registry files
arch/ ... architecture compiling options
clean................................script to clean created files and executables
compile...script to compile component
configure..................................... script to create the configure file

7

1. HWRF System Introduction

dyn/_em/.........Advanced Research WRF dynamic modules, not used by HWRF
dyn_exp/ ’toy’ dynamic core, not used by HWRF
dyn_nmm/ ..WRF-NMM dynamic modules
external/ external packages including ocean coupler interface
frame/..modules for WRF framework
hydro/...................................hydrology module, not used by HWRF
inc/ ... include files
main/..WRF main routines, such as wrf.F
phys/ .. physics modules
run/..run directory, not used by HWRF
share/..........................modules for WRF mediation layer and WRF I/O
test/.........sub-dirs for specific configurations of WRF, such as idealized HWRF
tools/...tools directory
var/..WRF-Var, not used by HWRF

Refer to the WRF-NMM Users’ Guide for more information. The WRF-NMM Users’ Guide
is available online at:
http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/V3/users_guide_nmm_
chap1-7.pdf.

1.3.6 WPSV3 – WRF Preprocessor
WPSV3/

arch/ ... architecture compiling options
clean................................script to clean created files and executables
compile...script to compile component
configure..................................... script to create the configure file
geogrid/...source code for geogrid.exe
link_grib.csh........script to link input GRIB files, used in idealized simulations
metgrid/...source code for metgrid.exe
test_suite/...WPS test cases
ungrib/...source code for ungrib.exe
util/..utility programs for WPSV3

1.3.7 UPP – Unified Post-Processor
UPP/

arch/ ... architecture compiling options
bin/
clean................................script to clean created files and executables
compile...script to compile component
configure..................................... script to create the configure file
makefile..top level makefile
include/
lib/
parm/...............parameter files to control UPP performed, not used by HWRF
scripts/........................sample scripts running UPP, not used by HWRF

8

http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/V3/users_guide_nmm_chap1-7.pdf
http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/V3/users_guide_nmm_chap1-7.pdf

1. HWRF System Introduction

src/..................................UPP and dependent libraries source codes

1.3.8 GSI – Gridpoint Statistical Interpolation
GSI/

arch/ ... architecture compiling options
clean................................script to clean created files and executables
compile...script to compile component
configure..................................... script to create the configure file
fix/..fix files for GSI, not used by HWRF
include/
lib/
makefile..top level makefile
run/..executables
src/...source codes

Makefile
libs/ .. dependent libraries
main/...GSI source code

util/..utilities, not used by HWRF

1.3.9 HWRF Run
hwrfrun/

parm/......................................files to configure HWRF experiment
exec/ empty directory where some executables will be linked
sorc/...........empty directory where HWRF components’ code should be placed
scripts/ Python scripts to run the HWRF components
wrappers/.....................ksh wrapper scripts used to run the Python scripts
ush/..Python modules

hwrf/.......................................HWRF-specific Python modules
produtils/..........HWRF-independent Python modules for generalization of
platforms and systems

nwport/.............................extra utilities for HWRF used in operations.

9

2
Software Installation

2.1 Introduction

The DTC community HWRF system, which is based on the NOAA operational HWRF,
consists of nine components.

• WRF Atmospheric Model
• WPS
• UPP
• GSI
• HWRF-utilities
• MPIPOM-TC
• GFDL Vortex Tracker
• NCEP Atmosphere-Ocean Coupler
• HWRF Run

The first three of these components are the traditional WRF components: WRF, WPS,
and UPP. GSI is a 3D variational data assimilation code used for data assimilation, and
the remaining four components are specific to the hurricane system itself, and as such are
referred to as the hurricane components of the HWRF system.

This chapter discusses how to build the HWRF system. It starts in Section 2.2 by discussing
where to find the source code. Section 2.3 covers the preferred directory structure and
how to unpack the tar files. Section 2.4 covers the system requirements for building and
running the components. Section 2.5 discusses the libraries included in the HWRF-utilities
component. Section 2.6 covers building WRF-NMM for HWRF. The remaining sections are
devoted to building each of the remaining components of the HWRF system.

10

2. Software Installation

2.2 Obtaining the HWRF Source Code

The HWRF hurricane system consists of nine components. All of these are available from
the HWRF website. While most of these codes are also available from other community
websites, the versions needed for HWRF should be acquired from the DTC HWRF website
to ensure they are a consistent set.

All of the HWRF components can be obtained through the HWRF website,

http://www.dtcenter.org/HurrWRF/users,

by selecting the Download and HWRF System tabs on the left vertical menu. New users
must first register before downloading the source code. Returning users need only provide
their registration email address. A successful download produces nine tar files.

• HWRF_v3.6a_WRFV3.tar.gz
• HWRF_v3.6a_WPSV3.tar.gz
• HWRF_v3.6a_UPP.tar.gz
• HWRF_v3.6a_GSI.tar.gz
• HWRF_v3.6a_hwrf-utilities.tar.gz
• HWRF_v3.6a_gfdl-vortextracker.tar.gz
• HWRF_v3.6a_ncep-coupler.tar.gz
• HWRF_v3.6a_pomtc.tar.gz
• HWRF_v3.6a_hwrfrun.tar.gz

After downloading each of the component codes, the user should check the links to known
issues and bug fixes to see if any code updates are required. You now have all the HWRF
system components as gzipped tar files. The next section describes how to organize them.

2.3 Setting up HWRF

Although the HWRF scripts may be modified for any directory structure, in this discussion it
is assumed that the HWRF system will be set up in a single flat directory structure. Because
of the storage requirements necessary for the complete HWRF system setup, it typically will
need to be located on a computer’s “scratch” or “work” partition.

The tar files can be unpacked by use of the GNU gunzip command,

gunzip *.tar.gz

and the tar files extracted by running tar -xvf individually on each of the tar files. It is
recommended that the User first unpack hwrfrun, which will create a directory hwrfrun/
in ${SCRATCH}. Then within hwrfrun/sorc/ directory, unpack the remaining tar files.

Once unpacked, there should be eight source directories in sorc/.

11

http://www.dtcenter.org/HurrWRF/users

2. Software Installation

• WRFV3 – Weather Research and Forecasting model
• WPSV3 – WRF Preprocessing System
• UPP – Unified Post-Processor
• GSI – Gridpoint statistical interpolation 3D var data assimilation
• hwrf-utilities – Vortex initialization, utilities, tools, and supplemental libraries
• gfdl-vortextracker – Vortex tracker
• ncep-coupler – Ocean/atmosphere coupler
• pomtc – Tropical cyclone version of MPIPOM

The next section covers the system requirements to build the HWRF system.

2.4 System Requirements, Libraries, and Tools

In practical terms, the HWRF system consists of a collection of Python modules, which runs a
sequence of serial and parallel code executables. The source code for these executables is in
the form of programs written in FORTRAN, FORTRAN 90, and C. In addition, the parallel
executables require some flavor of MPI/OpenMP for the distributed memory parallelism, and
the I/O relies on the netCDF I/O libraries. Beyond the standard scripts, the build system
relies on use of the Perl scripting language, along with GNU make and date.

The basic requirements for building and running the HWRF system are listed below.

• FORTRAN 90+ compiler
• C compiler
• MPI v1.2+
• Perl
• netCDF v3.6+
• LAPACK and BLAS
• Python
• Parallel-netCDF
• PNG
• JasPer
• zlib

Because these tools and libraries are typically the purview of system administrators to install
and maintain, they are considered part of the basic system requirements.

2.4.1 Compilers

The DTC community HWRF system has been tested on a variety of computing platforms.
Currently the HWRF system is actively supported on Linux computing platforms using both
the Intel and PGI Fortran compilers. Unforeseen build issues may occur when using older
compiler versions. Typically the best results come from using the most recent version of a
compiler. The known issues section of the community website provides the complete list of

12

2. Software Installation

compiler versions currently supported.

While the community HWRF build system provides legacy support for the IBM AIX plat-
forms, the unavailability of AIX test platforms means all AIX support is cursory at best.

2.4.2 netCDF, pnetCDF, and MPI

The HWRF system requires a number of support libraries not included with the source
code. Many of these libraries may be part of the compiler installation, and are subsequently
referred to as system libraries. For our needs, the most important of these libraries are
netCDF, pnetCDF, and MPI.

An exception to the rule of using the most recent version of code, libraries, and compilers
is the netCDF library. The HWRF system I/O requires the most recent V3 series of the
library. Version 4 of netCDF diverges significantly from version 3, and is not supported. The
preferred version of the library is netCDF v3.6+. The netCDF libraries can be downloaded
from the Unidata website.

http://www.unidata.ucar.edu

Typically, the netCDF library is installed in a directory that is included in the users path
such as /usr/local/lib. When this is not the case, the environment variables NETCDF
and PNETCDF can be set to point to the location of the library.

For csh/tcsh, the path can be set with the following command.

setenv NETCDF path_to_netcdf_library/
setenv PNETCDF path_to_pnetcdf_library/

For bash/ksh, the equivalent command is as follows.

export NETCDF=path_to_netcdf_library/
export PNETCDF=path_to_pnetcdf_library/

It is crucial that system libraries, such as netCDF, be built with the same FORTRAN com-
piler, compiler version, and compatible flags, as used to compile the remainder of the source
code. This is often an issue on systems with multiple FORTRAN compilers, or when the
option to build with multiple word sizes (e.g. 32-bit vs. 64-bit addressing) is available.

Many default Linux installations include a version of netCDF. Typically this version is only
compatible with code compiled using gcc. To build the HWRF system, a version of the li-
brary must be built using your preferred compiler and with both C and FORTRAN bindings.
If you have any doubts about your installation, ask your system administrator.

Building and running the HWRF distributed memory parallel executables requires that a
version of the MPI library be installed. Just as with the netCDF library, the MPI library
must be built with the same FORTRAN compiler, and use the same word size option flags,

13

http://www.unidata.ucar.edu

2. Software Installation

as the remainder of the source code. Installing MPI on a system is typically a job for
the system administrator and will not be addressed here. If you are running HWRF on a
computer at a large center, check the machine’s documentation before you ask the local
system administrator.

2.4.3 LAPACK and BLAS

The LAPACK and BLAS libraries are open source mathematics libraries for solving linear
algebra problems. The source code for these libraries is freely available to download from
NETLIB at

http://www.netlib.org/lapack/.

Most commercial compilers provide their own optimized versions of these routines. These
optimized versions of BLAS and LAPACK provide superior performance to the open source
versions.

On Linux systems, HWRF supports both the Intel ifort and PGI pgf90 Fortran compilers.
The Intel compiler has its own optimized version of the BLAS and LAPACK routines called
the Math Kernel Library or MKL. The MKL libraries provide most of the LAPACK and
BLAS routines needed by the HWRF system. The PGI compiler typically comes with its
own version of the BLAS and LAPACK libraries. Again, the PGI version of BLAS and
LAPACK contains most of the routines needed by HWRF. For PGI these libraries are loaded
automatically. Since the vender versions of the libraries are often incomplete, a copy of the
full BLAS library is provided with the HWRF-utilities component. The build system links to
this version of the libraries last.

On the IBM machines, the AIX compiler is often, but not always, installed with the Engi-
neering and Scientific Subroutine Libraries or ESSL. In part, the ESSL libraries are highly
optimized parallel versions of many of the LAPACK and BLAS routines. The ESSL libraries
provide all of the necessary linear algebra library routines needed by the HWRF system.

2.5 Included Libraries

For convenience in building HWRF-utilities, the MPIPOM-TC, and the GFDL Vortex Tracker
components, the HWRF-utilities component includes a number of libraries in the hwrf-
utilities/libs/src/ directory. The following libraries are built automatically when the
HWRF-utilities component is built.

• BACIO
• BLAS
• BUFR
• SFCIO

14

http://www.netlib.org/lapack/

2. Software Installation

• SIGIO
• SP
• W3
• G2

The other components, WPS, WRF, UPP, and GSI, come with their own versions of many of
these libraries, but typically they have been customized for that particular component and
should not be used by the other components.

When the HWRF-utilities component is compiled, it starts by first building all the included
libraries. The vortex initialization code contained in the HWRF-utilities component requires
all of the above libraries except for the SFCIO library. In addition, it requires both the BLAS
and LAPACK mathematical libraries when the IBM ESSL library is not included with the
compiler installation.

The MPIPOM-TC component requires the SFCIO, SP and W3 libraries. In addition, the
local copy of the BLAS library is required when the ESSL library is not included with the
compiler installation. This is because the vender-supplied versions of BLAS are typically
incomplete, and the local version supplements the vender version. Typically this is for any
system other than IBM. The GFDL Vortex Ttracker component requires the BACIO and W3
libraries. The NCEP Coupler does not require any additional libraries.

2.5.1 Component Dependencies

The eight components of the HWRF system that contain source code have certain inter-
dependencies. Many of the components depend on libraries produced by other components.
For example, four of the components, WPS, UPP, GSI, and the HWRF-utilities, require
linking to the WRF I/O API libraries to build. Since these I/O libraries are created as part of
the WRF build, the WRF component must be built first. Once WRF is built, WPS, UPP, GSI,
or the HWRF-utilities can be built in any order. Since building the HWRF-utilities produces
the supplemental libraries needed by MPIPOM-TC and by the GFDL Vortex Tracker, the
HWRF-utilities must be built before either of these components. The remaining component,
the NCEP Coupler, can be built independently of any of the other components. The main
system component dependency is as follows.

• WRF
– WPS
– UPP
– GSI
– HWRF-utilities

* MPIPOM-TC (BLAS on Linux, sfcio, sp, w3)

* GFDL Vortex Tracker (w3, bacio, G2)
• NCEP Coupler

15

2. Software Installation

2.6 Building WRF-NMM

The WRF code has a fairly sophisticated build mechanism. The package attempts to deter-
mine the machine where the code is being built, and then presents the user with supported
build options on that platform. For example, on a Linux machine, the build mechanism
determines whether the machine is 32-bit or 64-bit, prompts the user for the desired type
of parallelism (such as serial, shared memory, distributed memory, or hybrid), and then
presents a selection of possible compiler choices.

In addition, the user may choose to run WRF with either real or idealized input data. The
idealized data case requires setting environment flags prior to compiling the code, which
creates a unique executable that should only be run with the idealized data. See Section
2.6.3 for compiling WRF for ideal runs.

2.6.1 Set Environment Variables

To correctly configure WRF-NMM for the HWRF system, set the following additional envi-
ronment variables beyond what WRF typically requires.

In C-Shell use the following commands.

setenv HWRF 1
setenv WRF_NMM_CORE 1
setenv WRF_NMM_NEST 1
setenv WRFIO_NCD_LARGE_FILE_SUPPORT 1

Add the following command for IBM AIX builds using C-Shell.

setenv IBM_REDUCE_BUG_WORKAROUND 1

In Bash shell, use the following commands.

export HWRF=1
export WRF_NMM_CORE=1
export WRF_NMM_NEST=1
export WRFIO_NCD_LARGE_FILE_SUPPORT=1

Add the following command for IBM AIX builds using Bash.

export IBM_REDUCE_BUG_WORKAROUND=1

These settings produce a version of WRF-NMM compatible with the HWRF system.

There is a bug in the IBM MPI implementation. Some MPI processes will get stuck in
MPI_Reduce and not return until the PREVIOUS I/O server group finishes writing. When
the environment variable IBM_REDUCE_BUG_WORKAROUND=1, a workaround is used that
replaces the MPI_Reduce call with many MPI_Send and MPI_Recv calls that perform the

16

2. Software Installation

sum on the root of the communicator.

Note that setting the environment variable WRF_NMM_NEST to 1 does not preclude running
with a single domain.

2.6.2 Configure and Compile WRF-NMM

To configure WRF-NMM, go to the top of the WRF directory (cd
${SCRATCH}/hwrfrun/sorc/WRFV3) and use the following command.

./configure

You will be presented with a list of build choices for your computer. These choices may
include multiple compilers and parallelism options.

For Linux architectures, there are currently 55 options. For the HWRF system, only the dis-
tributed memory (dmpar) builds are recommended. Therefore as an example, the acceptable
PGI options are 3, 7, 11, or 50 (shown below).

3. Linux x86_64 i486 i586 i686, PGI compiler with gcc (dmpar)
7. Linux x86_64, PGI compiler with pgcc, SGI MPT (dmpar)
11. Linux x86_64, PGI accelerator compiler with gcc (dmpar)
50. Linux x86_64 i486 i586 i686, PGI compiler with pgcc (dmpar)

The configure step for the WRF model is now completed. A file has been created in the WRF
directory called configure.wrf. The compile options and paths in the configure.wrf
file can be edited for further customization of the build process.

To build the WRF-NMM component enter the following command.

./compile nmm_real

In general, it is good practice to save the standard out and error to a log file for reference.
In the csh/tcsh shell this can be done with the following command.

./compile nmm_real |& tee build.log

For the ksh/bash shell use the following command.

./compile nmm_real 2>& 1 | tee build.log

In both cases, the standard out and the standard error are sent to both the file build.log
and to the screen. The approximate compile time varies according to the system being
used and the aggressiveness of the optimization. On IBM AIX machines, the compiler
optimization significantly slows down the build time, and it typically takes at least half an
hour to complete. On most Linux systems, the WRF model typically compiles in around 20
minutes.

17

2. Software Installation

It is important to note that the commands ./compile -h and ./compile produce a listing
of all of the available compile options, but only the nmm_real option is relevant to the HWRF
system.

A successful compilation produces two executables listed below in the directory main/.

real_nmm.exe WRF initialization
wrf.exe WRF model integration

If a recompilation is necessary, a clean to remove all object files (except those in external/)
should be completed first.

./clean

A complete clean is strongly recommended if the compilation failed, the Registry has been
changed, or the configuration file is changed. To conduct a complete clean that removes all
built files in all directories, as well as the configure.wrf use the "-a" option.

./clean -a

Further details on the HWRF atmospheric model, physics options, and running the model
can be found in the Running HWRF chapter of the Users’ Guide.

Complete details on building and running the WRF-NMM model are available in the WRF-
NMM Users’ Guide, which is available here:

http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/V3/users_guide_nmm_
chap1-7.pdf.

Should you experience difficulty building WRF while using the PGI compiler, a helpful guide
for building WRF with PGI compilers on a 32-bit or 64-bit LINUX system can be found at:

http://www.pgroup.com/resources/tips.htm.

2.6.3 Configure and Compile: Idealized Tropical Cyclone WRF-
NMM

The HWRF idealized tropical cyclone WRF-NMM component requires different executables
than for the real case. The following section will describe how to build the executables for
the idealized case.

Building the idealized component requires a slightly different configuration than for the
standard WRF build outlined in Section 2.6.1. If a user has already built the standard
WRFV3 and created real_nmm.exe and wrf.exe, and now wants to build WRFV3 for
idealized tropical cyclone simulations, they first need to completely clean the previous build.
This is done by running a

18

http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/V3/users_guide_nmm_chap1-7.pdf
http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/V3/users_guide_nmm_chap1-7.pdf
http://www.pgroup.com/resources/tips.htm

2. Software Installation

./clean -a

which removes ALL build files, including the executables, libraries, and the configure.hwrf.
To correctly configure WRF-NMM for the HWRF idealized tropical cyclone simulation re-
quires setting the additional environment variable IDEAL_NMM_TC. Several other variables
must also be set.

In C-Shell use the following commands.

setenv WRF_NMM_CORE 1
setenv WRF_NMM_NEST 1
setenv HWRF 1
setenv IDEAL_NMM_TC 1
setenv WRFIO_NCD_LARGE_FILE_SUPPORT 1

The following commands should be used for bash/ksh.

export WRF_NMM_CORE=1
export WRF_NMM_NEST=1
export HWRF=1
export IDEAL_NMM_TC=1
export WRFIO_NCD_LARGE_FILE_SUPPORT=1

To configure WRF-NMM, go to the top of the WRF directory (cd
${SCRATCH}/hwrfrun/sorc/WRFV3) before issuing the following command.

./configure

You will be presented with a list of build choices for your computer. These choices may
include multiple compilers and parallel options.

For Linux architectures, there are currently 51 options. For the HWRF system, only the dis-
tributed memory (dmpar) builds are recommended. Therefore as an example, the acceptable
PGI options are 3, 7, 11, or 50 (shown below).

3. Linux x86_64 i486 i586 i686, PGI compiler with gcc (dmpar)
7. Linux x86_64, PGI compiler with pgcc, SGI MPT (dmpar)
11. Linux x86_64, PGI accelerator compiler with gcc (dmpar)
50. Linux x86_64 i486 i586 i686, PGI compiler with pgcc (dmpar)

The configure step for the WRF model is now completed. A file has been created in the WRF
directory called configure.wrf. The compile options and paths in the configure.wrf
file can be edited for further customization of the build process.

Once the configure step is complete, the code is compiled by including the target
nmm_tropical_cyclone to the compile command.

./compile nmm_tropical_cyclone

19

2. Software Installation

A successful compilation produces two executables in the directory main/.

ideal.exe WRF initialization
wrf.exe WRF model integration

Note: The only compilation requirements for the idealized capability are WPS and WRF. If
wanted, UPP may also be used. The components MPIPOM-TC and coupler, GSI, GFDL Vor-
tex Tracker, and hwrf-utilities are not used in HWRF idealized tropical cyclone simulations.

2.7 Building HWRF-utilities

The hwrf-utilities/ directory consists of an eclectic collection of source code and li-
braries. The libraries, which are provided in support of the MPIPOM-TC and the GFDL
Vortex Tracker, include the BACIO, BLAS, BUFR, SIGIO, SFCIO, SP, and W3 libraries. In
addition to these libraries, this component includes the source code for the vortex initializa-
tion routines and software tools such as the grbindex.

2.7.1 Set Environment Variables

The HWRF-utilities build requires that two path variables, NETCDF and WRF_DIR, be set to
the appropriate paths. The netCDF library path NETCDF is required for building the WRF-
NMM component, and its value should be appropriately set if that component compiled
successfully. The WRF_DIR path variable should point to the WRF directory compiled in the
previous section. You must first build WRF before compiling any of the other components.

If you have followed the directory structure suggested in Section 2.3, the WRF_DIR path
should be set to ${SCRATCH}/hwrfrun/sorc/WRFV3. In csh/tcsh, the variables may be
set with two commands.

setenv NETCDF /absolute_path_to_appropriate_netCDF_library/
setenv WRF_DIR ${SCRATCH}/hwrfrun/sorc/WRFV3

For the ksh/bash shells, use the following two commands.

export NETCDF=/absolute_path_to_appropriate_netCDF_library/
export WRF_DIR=${SCRATCH}/hwrfrun/sorc/WRFV3

It is crucial that the Fortran compiler used to build the libraries (Intel, PGI, XLF, etc.) be
the same as the compiler used to compile the source code. Typically, this is only an issue in
two situations, on Linux systems having multiple compilers installed, and on systems where
there is a choice between building the code with either 32-bit or 64-bit addressing.

20

2. Software Installation

2.7.2 Configure and Compile

To configure HWRF-utilities for compilation, from within the hwrf-utilities directory,
type the following command.

./configure

The configure script checks the system hardware, and if the path variables are not set, asks
for the correct paths to the netCDF libraries and the WRF build directory. It concludes by
asking the user to choose a configuration supported by current machine architecture.

For Linux, seven options are available.

1. Linux x86_64, PGI compiler w/LAPACK (dmpar)
2. Linux x86_64, PGI compiler w/LAPACK, SGI MPT (dmpar)
3. Linux x86_64, Intel compiler w/MKL (dmpar)
4. Linux x86_64, Intel compiler w/MKL, SGI MPT (dmpar)
5. Linux x86_64, Intel compiler w/MKL, IBM POE (dmpar)
6. Linux x86_64, Intel compiler w/LAPACK (dmpar)
7. Linux x86_64, Intel compiler w/LAPACK, SGI MPT (dmpar)

For the PGI compiler, pick options 1 or 2. For Intel builds, pick option 3, 4, or 5 if your
compiler includes the MKL libraries, and option 6 or 7 if it does not.

If successful, the configure script creates a file called configure.hwrf in the hwrf-
utilities/ directory. This file contains compilation options, rules, and paths specific
to the current machine architecture, and can be edited to change compilation options, if
desired.

In csh/tcsh, compile the HWRF-utilities and save the build output to a log file.

./compile |& tee build.log

For the ksh/bash shell, use the following command.

./compile 2>&1 | tee build.log

If the compilation is successful, it will create the following executables in the directory
exec/.

bufr_remorest.exe
diffwrf_3dvar.exe
grbindex.exe
grp_atcf_to_stats.exe
grp_getcenter.exe
grp_gridparse.exe
grp_hwrf_atcf_intensity.exe
grp_hwrf_atcf_tracks.exe
grp_inddiag.exe

grp_inddiagnull.exe
grp_nameparse.exe
grp_statsin_domain.exe
grp_statsin_domain_TI.exe
grp_totaldiag.exe
hwrf_afos.exe
hwrf_anl_4x_step2.exe
hwrf_anl_bogus_10m.exe
hwrf_anl_cs_10m.exe

21

2. Software Installation

hwrf_atcf_to_stats.exe
hwrf_aux_rw.exe
hwrf_bdy_update.exe
hwrf_binary_grads.exe
hwrf_bin_io.exe
hwrf_blend_gsi.exe
hwrf_combinetrack.exe
hwrf_create_nest_1x_10m.exe
hwrf_create_trak_fnl.exe
hwrf_create_trak_guess.exe
hwrf_data_flag.exe
hwrf_data_remv.exe
hwrf_gridgenfine.exe
hwrf_guess.exe
hwrf_htcfstats.exe
hwrf_inter_2to1.exe
hwrf_inter_2to2.exe
hwrf_inter_2to6.exe
hwrf_inter_4to2.exe
hwrf_inter_4to6.exe
hwrf_merge_nest_4x_step12_3n.exe

hwrf_netcdf_grads.exe
hwrf_nhc_products.exe
hwrf_old_gettrk.exe
hwrf_pert_ct1.exe
hwrf_prep.exe
hwrf_read_indi_write_all.exe
hwrf_readtdrstmid.exe
hwrf_readtdrtime.exe
hwrf_split1.exe
hwrf_supvit.exe
hwrf_swath.exe
hwrf_swcorner_dynamic.exe
hwrf_wrfout_newtime.exe
mdate.exe
mpiserial.exe
ndate.exe
nhour.exe
serpoe.exe
wave_sample.exe
wgrib.exe

In addition, it will create twelve libraries in the directory libs/.

libbacio.a — BACIO library
libblas.a — BLAS library
libbufr_i4r4.a — BUFR library built with -i4 Ðr4 flags
libbufr_i4r8.a — BUFR library built with -i4 -r8 flags
libg2.a — GRIB2 library
libhwrfutil_i4r4.a — Miscellaneous data manipulation utilities
libsfcio_i4r4.a — SFCIO library built with -i4 -r4 flags
libsigio_i4r4.a — SIGIO library built with Ði4 Ðr4 flags
libsp_i4r8.a — SP library built with -i4 -r8 flags
libsp_i4r4.a — SP library built with -i4 -r4 flags
libw3_i4r8.a — W3 library built with -i4 -r8 flags
libw3_i4r4.a — W3 library built with -i4 -r4 flags

These libraries will be used by the GFDL Vortex Tracker and the MPIPOM-TC ocean model.
The configuration step for these components will require setting a path variable to point to
the hwrf-utilities/libs/ directory in the HWRF-utilities directory.

If a recompilation is necessary, a clean to remove all object files (except those in external/)
should be completed first.

./clean

A complete clean is strongly recommended if the compilation failed, the Registry has been

22

2. Software Installation

changed, or the configuration file is changed. To conduct a complete clean that removes all
built files in all directories, as well as the configure.hwrf, use the "-a" option.

./clean -a

The HWRF-utilities can be compiled to produce only the libraries by typing the command
below.

./compile library

This is useful for users that do not intend to use the entire HWRF system, but just need the
libraries to build the tracker.

2.8 Building MPIPOM-TC

2.8.1 Set Environment Variables

The Tropical Cyclone version of the MPIPOM-TC requires four external libraries: SFCIO,
SP, W3, and PnetCDF. On platforms that lack the ESSL mathematical libraries, typically
anything other than IBM AIX machines, a fifth library (BLAS) is required. The first three of
these libraries are located in the hwrf-utilities/libs/ directory and should be available
if the HWRF-utilities component has been built successfully. You must first build them before
building MPIPOM-TC.

Set the library paths (assuming the directory structure proposed in Section 2.3) using C-Shell.

setenv LIB_W3_PATH ${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
setenv LIB_SP_PATH ${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
setenv LIB_SFCIO_PATH ${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
setenv PNETCDF PATH_TO_PNETCDF

Similarly, the libraries can be set using the ksh/bash shell.

export LIB_W3_PATH=${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
export LIB_SP_PATH=${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
export LIB_SFCIO_PATH=${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
export PNETCDF=PATH_TO_PNETCDF

In addition to these libraries, MPIPOM-TC requires linear algebra routines from the BLAS
library. When building MPIPOM-TC on an IBM platform, the build will automatically use
the ESSL library, which includes highly optimized versions of some of the BLAS routines.
When building MPIPOM-TC in a platform without ESSL (such as Linux), the build system
uses the BLAS mathematical library provided with the hwrf-utilities component. In such a
case, the fifth and final path must be set.

setenv LIB_BLAS_PATH ${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/

23

2. Software Installation

For the ksh/bash shells the path can be set similarly.

export LIB_BLAS_PATH=${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/

2.8.2 Configure and Compile

Configure MPIPOM-TC for compilation from within the pomtc/ directory.

./configure

The configure script checks the system hardware, and if the path variables are not set, asks
for software paths to the W3, SP, SFCIO, and PnetCDF, and for Linux, the BLAS libraries.
It concludes by asking the user to choose a configuration supported by current machine
architecture.

For the IBM, only one choice is available.

1. AIX (dmpar)

The following options exist for Linux.

1. Linux x86_64, PGI compiler (dmpar)
2. Linux x86_64, PGI compiler, SGI MPT (dmpar)
3. Linux x86_64, Intel compiler (dmpar)
4. Linux x86_64, Intel compiler, SGI MPT (dmpar)
5. Linux x86_64, Intel compiler, IBM POE (dmpar)

After selecting the desired compiler option, the configure script creates a file called con-
figure.pom. This file contains compilation options, rules, and paths specific to the current
machine architecture, and can be edited to change compilation options, if desired.

Compile the MPIPOM-TC and save the build output to a log file with csh/tcsh.

./compile |& tee ocean.log

Simarly, for ksh, use the following syntax.

./compile 2>&1 | tee ocean.log

If the compilation is successful, eleven executables are created in ocean_exec/.

gfdl_date2day.exe
gfdl_day2date.exe
gfdl_getsst.exe
gfdl_sharp_mcs_rf_l2m_rmy5.exe
hwrf_ocean_fcst.exe
hwrf_ocean_init.exe
pomprep_fbtr.xc

24

2. Software Installation

pomprep_gdm3.xc
pomprep_idtr.xc
pomprep_ncda.xc
transatl06prep.xc

If a recompilation is necessary, a clean to remove all object files should be completed.

./clean

A complete clean is strongly recommended if the compilation failed, the configuration file
has been changed, or the configuration file is changed. To conduct a complete clean that
removes all built files in all directories, as well as the configure.pom, use the "-a" option.

./clean -a

2.9 Building GFDL Vortex Tracker

2.9.1 Set Environment Variables

The GFDL Vortex Tracker requires two external libraries, W3 and BACIO. These libraries
are located in the hwrf-utility/libs/ directory and should be available if the HWRF-
utilities are successfully built. You must build the HWRF-utilities before building the GFDL
Vortex Tracker.

Again, assuming that the directory structure is the same as that proposed in Section 2.3, set
the library paths.

setenv LIB_W3_PATH ${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
setenv LIB_BACIO_PATH ${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
setenv LIB_G2_PATH ${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
setenv LIB_Z_PATH SYSTEM_LOCATION
setenv LIB_PNG_PATH SYSTEM_LOCATION
setenv LIB_JASPER_PATH SYSTEM_LOCATION

Similarly, the syntax for the ksh/bash shell can be used.

export LIB_W3_PATH=${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
export LIB_BACIO_PATH=${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
export LIB_G2_PATH=${SCRATCH}/hwrfrun/sorc/hwrf-utilities/libs/
export LIB_Z_PATH=SYSTEM_LOCATION
export LIB_PNG_PATH=SYSTEM_LOCATION
export LIB_JASPER_PATH=SYSTEM_LOCATION

Where SYSTEM_LOCATION should be replaced with the full path to the installed library. On

25

2. Software Installation

many systems, these libraries reside in /usr/lib or /usr/lib64.

2.9.2 Configure and Compile

Configure the GFDL Vortex Tracker for compilation from within the gfdl-vortextracker
directory.

./configure

The configure script checks the system hardware, and if the path variables are not set, asks
for software paths to the W3 and BACIO libraries. It concludes by asking the user to choose
a configuration supported by current machine architecture.

For Linux, there are six options.

1. Linux x86_64, PGI compiler (serial)
2. Linux x86_64, Intel compiler (serial)
3. Linux x86_64, Intel compiler super debug (serial)
4. Linux x86_64, PGI compiler, SGI MPT (serial)
5. Linux x86_64, Intel compiler, SGI MPT (serial)
6. Linux x86_64, Intel compiler, IBM POE (serial)

The configure script creates a file called configure.trk. This file contains compilation
options, rules, and paths specific to the current machine architecture.

The configure file can be edited to change compilation options, if desired.

Compile the vortex tracker and save the build output to a log file.

./compile |& tee tracker.log

The command for the ksh/bash shell follows.

./compile 2>&1 | tee tracker.log

If the compilation was successful, three executables are created in the directory trk_exec/.

hwrf_gettrk.exe
hwrf_tave.exe
hwrf_vint.exe

If a recompilation is necessary, a clean to remove all object files should be completed.

./clean

A complete clean is strongly recommended if the compilation failed, the configuration file
has been changed, or the configuration file is changed. To conduct a complete clean that

26

2. Software Installation

removes all built files in all directories, as well as the configure.trk, use the "-a" option.

./clean -a

2.10 Building the NCEP Coupler

2.10.1 Configure and Compile

Configure the NCEP Coupler for compilation from within the ncep-coupler/ directory.

./configure

The configure script checks the system hardware, asks the user to choose a configuration
supported by current machine architecture, and creates a configure file called
configure.cpl.

There are five dmpar options for Linux.

1. Linux x86_64, PGI compiler (dmpar)
2. Linux x86_64, PGI compiler, SGI MPT (dmpar)
3. Linux x86_64, Intel compiler (dmpar)
4. Linux x86_64, Intel compiler, SGI MPT (dmpar)
5. Linux x86_64, Intel compiler, IBM POE (dmpar)

The configure file configure.cpl contains compilation options, rules, and paths specific
to the current machine architecture, and can be edited to change compilation options if
desired.

Compile the coupler and save the build output to a log file.

./compile |& tee coupler.log

For the ksh/bash shell, use the following command.

./compile 2>&1 | tee coupler.log

If the compilation is successful, it will create the single executable hwrf_wm3c.exe in the
cpl_exec/ directory.

If a recompilation is necessary, a clean to remove all object files should be completed.

./clean

A complete clean is strongly recommended if the compilation failed, the configuration file
has been changed, or the configuration file is changed. To conduct a complete clean that
removes all built files in all directories, as well as the configure.cpl, use the "-a" option.

27

2. Software Installation

./clean -a

2.11 Building WPS

2.11.1 Set Environment Variables

The WRF WPS requires the same build environment as the WRF-NMM model, including
the netCDF libraries and MPI libraries. Since the WPS makes direct calls to the WRF I/O
API libraries included with the WRF model, the WRF-NMM model must be built prior to
building the WPS.

Set up the build environment for WPS by setting the WRF_DIR environment variable.

setenv WRF_DIR ${SCRATCH}/hwrfrun/sorc/WRFV3/

For bash/ksh, use the command that follows.

export WRF_DIR=${SCRATCH}/hwrfrun/sorc/WRFV3/

Further details on using the WPS to create HWRF input data can be found in Chapter 4 of
the HWRF Users’ Guide.

Complete details on building and running the WPS are available from the WRF-NMM Users’
Guide, and can be downloaded from:

http://www.dtcenter.org/wrf-nmm/users/docs/overview.php.

2.11.2 Configure and Compile

Following the compilation of the WRF-NMM executables, change to the WPS directory and
issue the configure command.

./configure

Select the appropriate dmpar option for your architecture and compiler choice. If you plan
to use GRIB2 data, you will also need to select a build option that supports GRIB2 I/O. This
will generate the configure resource file.

On Linux computers, there are 38 listed options. The first 28 are the most relevant to
HWRF. Select if you want GRIB2 support, or if you don’t.

1. Linux x86_64, gfortran (serial)
2. Linux x86_64, gfortran (serial_NO_GRIB2)
3. Linux x86_64, gfortran (dmpar)

28

http://www.dtcenter.org/wrf-nmm/users/docs/overview.php

2. Software Installation

4. Linux x86_64, gfortran (dmpar_NO_GRIB2)
5. Linux x86_64, PGI compiler (serial)
6. Linux x86_64, PGI compiler (serial_NO_GRIB2)
7. Linux x86_64, PGI compiler (dmpar)
8. Linux x86_64, PGI compiler (dmpar_NO_GRIB2)
9. Linux x86_64, PGI compiler, SGI MPT (serial)
10. Linux x86_64, PGI compiler, SGI MPT (serial_NO_GRIB2)
11. Linux x86_64, PGI compiler, SGI MPT (dmpar)
12. Linux x86_64, PGI compiler, SGI MPT (dmpar_NO_GRIB2)
13. Linux x86_64, IA64 and Opteron (serial)
14. Linux x86_64, IA64 and Opteron (serial_NO_GRIB2)
15. Linux x86_64, IA64 and Opteron (dmpar)
16. Linux x86_64, IA64 and Opteron (dmpar_NO_GRIB2)
17. Linux x86_64, Intel compiler (serial)
18. Linux x86_64, Intel compiler (serial_NO_GRIB2)
19. Linux x86_64, Intel compiler (dmpar)
20. Linux x86_64, Intel compiler (dmpar_NO_GRIB2)
21. Linux x86_64, Intel compiler, SGI MPT (serial)
22. Linux x86_64, Intel compiler, SGI MPT (serial_NO_GRIB2)
23. Linux x86_64, Intel compiler, SGI MPT (dmpar)
24. Linux x86_64, Intel compiler, SGI MPT (dmpar_NO_GRIB2)
25. Linux x86_64, Intel compiler, IBM POE (serial)
26. Linux x86_64, Intel compiler, IBM POE (serial_NO_GRIB2)
27. Linux x86_64, Intel compiler, IBM POE (dmpar)
28. Linux x86_64, Intel compiler, IBM POE (dmpar_NO_GRIB2)

Select the appropriate "dmpar" option for your choice of compiler.

Compile the coupler and save the build output to a log file.

./compile |& tee wps.log

For the ksh/bash shell, use the equivalent command.

./compile 2>&1 | tee wps.log

After issuing the compile command, a successful compilation of WPS produces the three
symbolic links: geogrid.exe, ungrib.exe, and metgrid.exe in the WPSV3/ directory,
and several symbolic links in the util/ directory.

avg_tsfc.exe
calc_ecmwf_p.exe
g1print.exe
g2print.exe
height_ukmo.exe
int2nc.exe
mod_levs.exe
rd_intermediate.exe

29

2. Software Installation

If any of these links do not exist, check the compilation log file to determine what went
wrong.

A complete clean is strongly recommended if the compilation failed or if the configuration
file is changed. To conduct a complete clean that removes ALL build files, including the
executables, libraries, and the configure.wps, use the "-a" option to clean.

./clean -a

For full details on the operation of WPS, see the WPS chapter of the WRF-NMM Users’
Guide.

2.12 Building UPP

The NCEP Unified Post-Processor was designed to interpolate WRF output from native
coordinates and variables to coordinates and variables more useful for analysis. Specifically,
UPP de-staggers the HWRF output, interpolates the data from its native vertical grid to
standard levels, and creates additional diagnostic variables.

The UPP requires the same Fortran and C compilers used to build the WRF model. In
addition, UPP requires the netCDF library and the WRF I/O API libraries (the latter is
included with the WRF build). The UPP build requires a number of support libraries (IP, SP,
W3), which are provided with the source code and are located in the UPP/lib/ directory.
These libraries are for the UPP build only. They should not be confused with the libraries
of the same name located in the hwrf-utilities/libs/ directory.

2.12.1 Set Environment Variables

The UPP requires the WRF I/O API libraries to successfully build. These are created when
the WRF model is built. If the WRF model has not yet been compiled, it must first be built
before compiling UPP.

Since the UPP build requires linking to the WRF-NMM I/O API libraries, it must be able to
find the WRF directory. The UPP build uses the WRF_DIR environment variable to define
the path to WRF. The path variable WRF_DIR must therefore be set to the location of the
WRF directory.

In addition to setting the path variable, building UPP for use with HWRF requires setting
the environment variable HWRF. This is the same variable set when building WRF-NMM
for HWRF.

Set up the environment for UPP.

30

2. Software Installation

setenv HWRF 1
setenv WRF_DIR ${SCRATCH}/hwrfrun/sorc/WRFV3/
setenv JASPERLIB SYSTEM_LOCATION_SO_FILE
setenv JASPERINC SYSTEM_LOCATION_HEADER_FILE

The syntax for bash/ksh is as follows.

export HWRF=1
export WRF_DIR=${SCRATCH}/hwrfrun/sorc/WRFV3/
export JASPERLIB=SYSTEM_LOCATION_SO_FILE
export JASPERINC=SYSTEM_LOCATION_HEADER_FILE

2.12.2 Configure and Compile

UPP uses a build mechanism similar to that used by the WRF model. Type

./configure

to generate the UPP configure file. The configure script will complain if the WRF_DIR path
has not been set. You will then be given a list of configuration choices tailored to your
computer.

For the LINUX operating systems, there are 10 options. Select the appropriate dmpar option
compatible with your system.

1. Linux x86_64, PGI compiler (serial)
2. Linux x86_64, PGI compiler (dmpar)
3. Linux x86_64, Intel compiler (serial)
4. Linux x86_64, Intel compiler (dmpar)
5. Linux x86_64, Intel compiler, SGI MPT (serial)
6. Linux x86_64, Intel compiler, SGI MPT (dmpar)
7. Linux x86_64, gfortran compiler (serial)
8. Linux x86_64, gfortran compiler (dmpar)
9. Linux x86_64, Intel compiler, IBM POE (serial)
10. Linux x86_64, Intel compiler, IBM POE (dmpar)

The configuration script will generate the configure file configure.upp. If necessary, the
configure.upp file can be modified to change the default compile options and paths.

To compile UPP, enter the following command (csh/tsch).

./compile |& tee build.log

Alternatively, the ksh/bash command can be used.

./compile 2>&1 | tee build.log

31

2. Software Installation

This command should create 13 UPP libraries in lib/.

libbacio.a
libCRTM.a
libg2.a
libg2tmpl.a
libgfsio.a
libip.a
libnemsio.a

libsfcio.a
libsigio.a
libsp.a
libw3emc.a
libw3nco.a
libxmlparse.a

Four UPP executables are produced in bin/.

cnvgrib.exe
copygb.exe
ndate.exe
unipost.exe

Once again, these libraries are for the UPP only, and should not be used by the other
components.

A complete clean is strongly recommended if the compilation failed, or if the configuration
file or source code is changed. Conduct a complete clean that removes ALL build files,
including the executables, libraries, and the configure.upp.

./clean

For full details on the operation of UPP, see the UPP chapter of the HWRF Users’ Guide,
and for complete details on building and running the UPP, see the WRF-NMM Users’ Guide,
which can be downloaded at:

http://www.dtcenter.org/wrf-nmm/users/docs/overview.php.

2.13 Building GSI

The community GSI requires the same build environment as the WRF-NMM model, includ-
ing the netCDF, MPI, and LAPACK libraries. In addition, GSI makes direct calls to the WRF
I/O API libraries included with the WRF model. Therefore the WRF model must be built
prior to building the GSI.

Further details on using the GSI with HWRF can be found in later chapters of this HWRF
Users’ Guide.

32

http://www.dtcenter.org/wrf-nmm/users/docs/overview.php

2. Software Installation

2.13.1 Set Environment Variables

Building GSI for use with HWRF requires setting three environmental variables. The first,
HWRF indicates to turn on the HWRF options in the GSI build. This is the same flag set
when building WRF-NMM for HWRF. The second is a path variable pointing to the root
of the WRF build directory. The third is the variable LAPACK_PATH, which indicates the
location of the LAPACK library on your system.

Set up the environment for GSI.

setenv HWRF 1
setenv WRF_DIR ${SCRATCH}/hwrfrun/sorc/WRFV3/

You may use bash/ksh instead.

export HWRF=1
export WRF_DIR=${SCRATCH}/hwrfrun/sorc/WRFV3/

The additional environment variable LAPACK_PATH may be needed on some systems. Typi-
cally, the environment variable LAPACK_PATH needs only to be set on Linux systems without
a vender provided version of LAPACK. IBM systems usually have the ESSL library installed
and therefore do not need the LAPACK. Likewise, the PGI compiler often comes with a
vender-provided version of LAPACK that links automatically with the compiler. Problems
with the vender-supplied LAPACK library are more likely to occur with the Intel compiler.
While the Intel compilers typically have the MKL libraries installed, the ifort compiler does
not automatically load the library. It is therefore necessary to set the LAPACK_PATH variable
to the location of the MKL libraries when using the Intel compiler.

Supposing that the MKL library path is set to the environment variable MKL, then the
LAPACK environment may be set in terms of MKL.

setenv LAPACK_PATH $MKL

Alternatively, the bash/ksh option is as follows.

export LAPACK_PATH=$MKL

2.13.2 Configure and Compile

To build GSI for HWRF, change into the GSI directory and issue the configure command.

./configure

Choose one of the configure options listed. On Linux computers, the listed options are as
follows.

1. Linux x86_64, PGI compilers (pgf90 & pgcc) (dmpar,optimize)

33

2. Software Installation

2. Linux x86_64, PGI compilers (pgf90 & pgcc) w/ Vender supplied MPI (dmpar,optimize)

3. Linux x86_64, PGI compilers (pgf90 & gcc) (dmpar,optimize)

4. Linux x86_64, PGI compilers (pgf90 & gcc) w/ Vender supplied MPI (dmpar,optimize)

5. Linux x86_64, GNU compilers (gfortran & gcc) (dmpar,optimize)

6. Linux x86_64, Intel compiler (ifort & icc) (dmpar,optimize)

7. Linux x86_64, Intel compiler (ifort & icc) w/ Vender supplied MPI (dmpar,optimize)

8. Linux x86_64, Intel/gnu compiler (ifort & gcc) (dmpar,optimize)

9. Linux x86_64, Intel/gnu compiler (ifort & gcc) w/ Vender supplied MPI (dmpar,optimize)

Select the appropriate dmpar option for your platform and compiler. For a generic Linux
machine, choose option (1) or (3) for a PGI build, or option (6) or (8) for an Intel build. On
Jet, select option (6) for an Intel build. For a SGI Linux installation, select (2) for PGI or (6)
for Intel. For an IBM Linux installation with an Intel compiler, select option (6).

After selecting the proper option, run the compile script.

./compile |& tee build.log

For the ksh/bash shell, use the following command.

./compile 2>&1 | tee build.log

The successful completion of the compile will place the GSI executable gsi.exe in the
run/ directory. If the executable is not found, check the compilation log file to determine
what went wrong.

A complete clean is strongly recommended if the compilation failed or if the configuration
file is changed. To conduct a complete clean that removes ALL build files, including the
executables, libraries, and the configure.gsi, use the "-a" option with clean.

./clean -a

For details on using GSI with HWRF, see the GSI chapter in the HWRF Users’ Guide. For
full details on the operation of GSI, see the DTC Community GSI Users’ Guide.

http://www.dtcenter.org/com-GSI/users/docs/index.php

34

http://www.dtcenter.org/com-GSI/users/docs/index.php

3
Running HWRF

3.1 HWRF Scripts Overview

HWRF v3.6a is run by a series of high-level ksh scripts in the wrappers/ directory, whose
primary duty is to set environment variables and call the mid-level Python scripts in the
scripts/ directory. The mid-level Python scripts call HWRF-specific Python modules in
the ush/ directory and subdirectories. Many of the experiment configuration parameters
and variables are set by files in the parm/ directory.

hwrfrun/
exec/
nwport/
parm/
scripts/
sorc/
ush/

hwrf/
pom/
produtil/
hwrf_*.py

wrappers/

35

3. Running HWRF

3.2 Defining an Experiment

Typically, there are five files responsible for configuring an experiment. Within the parm/
directory, there are four configure files.

hwrf.conf
hwrf_basic.conf
hwrf_input.conf
system.conf

In wrappers/, there is global_vars.ksh.

This section gives an overview of each of these files and how they should be edited to
configure an experiment.

3.2.1 Overview of hwrf.conf

The purpose of hwrf.conf is to define the directory structure for the source code, and
many of the more common namelist options for the components of HWRF. If the source
code directory structure has been set up as defined in Section 2.3, and HWRF will be run
with the 2014 operational configuration, hwrf.conf will point to the correct executable
files. Make sure that the executable variables that point to paths including $HOMEhwrf are
uncommented.

Note that not all of the namelist parameters have been included in this file. Those
found in this file will override those set in the template namelists found in the hwrf-
utilities/parm/ directory.

3.2.2 Overview of hwrf_basic.conf

The purpose of hwrf_basic.conf is to define some basic aspects of the HWRF configu-
ration. In this file, users can choose whether or not the data assimilation, vortex relocation,
and coupling with the ocean will be turned on. Additionally, variable use_spectral con-
trols whether the HWRF will use spectral GFS and GDAS files to create initial conditions.
When variable use_spectral is set to no, initialization is done using only GRIB files. Note
that the GSI still needs spectral input from GDAS and the GFS Ensemble to run in hybrid
mode. The use_spectral flag only controls the input to ungrib or prep_hybrid, it does
not control the input to GSI.

Another important variable in this configuration file is allow_fallbacks. Most commu-
nity users will have it set to no, which is the default. In operations, this variable is set to
yes, which enables alternate paths in the HWRF run in case a component fails. For instance,
when allow_fallbacks is set to yes and GSI fails, the run does not stop but instead the
initial conditions for the main forecast are obtained directly from the output of the vortex

36

3. Running HWRF

relocation.

Finally, hwrf_basic.conf is also used to set variables defining the directories containing
the HWRF source code (HOMEhwrf) and various output directories. Some of the output
directories are scrubbed by default after each run to avoid filling the disk (directories under
CDSCRUB), while others are not scrubbed (those under CDNOSCRUB). To turn off scrubbing
for a component of HWRF, go to that section of hwrf_basic.conf and add SCRUB=NO.
One of those directories, where most of the output is written to, is named WORKhwrf.

3.2.3 Overview of hwrf_input.conf

This file defines the input data directory structure. It currently contains input data locations
for users on three platforms: those on the NOAA research and development machines Zeus
or Jet with access to the EMC input data directory; and community users that stage the input
data using the directory structure described in Section 3.3. These three sets of input data
are described in the sections labeled [zeus_hist], [jet_hist], and [comm_hist],
respectively.

Users who wish to adopt a different input data directory structure may define it within this
file by adding an additional section, or by editing the existing [comm_hist] section. While
the input data can be placed anywhere that is locally available to the compute nodes being
used, users are not advised to change the input file naming convention.

The choice of which set of input data will actually be used in an experiment is determined by
variable input_catalog in file system.conf. In order to use the test datasets provided
by DTC, users should set this variable to comm_hist. The user must also set the path to the
location of the input data within the [comm_hist] section of hwrf_input.py by editing
the variable inputroot.

3.2.4 Overview system.conf

This file defines the top-level output directory structure and a handful of other variables used
for automation. Community users will need to copy the example file system.conf.jet to
system.conf and customize the following variables.

disk_project The name of the project on the computational platform
(used to compose the output directory name).

input_catalog The choice of the input file location. This location must ex-
ist in the file hwrf_input.conf. Community users should
set it to comm_hist.

[dir] section CDNOSCRUB, CDSCRUB, and CDSAVE set the location of
the HWRF install and output files.

syndat The location of input TC Vitals. Community users should
set it to the location of staged SYNDAT–PLUS dataset, as
explained later in this chapter.

37

3. Running HWRF

The sections [wrfexe] and [runwrf] describe the mapping of the processor distribution
for the WRF runs and should not be altered.

3.2.5 Overview of global_vars.ksh

The file global_vars.ksh is used for setting a few environment variables to define the
case to be run by the wrapper scripts. The user should set the first five variables.

export START_TIME=YYYYMMDDHH Initial time of the forecast
export SID=18L Storm ID, e.g. 18L is Sandy – the 18th storm

of the Atlantic season; Invest 99 in the East
Pacific would be 99E

export CASE=HISTORY For most users, this will be HISTORY. FORE-
CAST is reserved for real-time mode.

export HOMEhwrf= Full path to the directory where HWRF has
been installed

export expt=test1 A name chosen by the user for the specific
test being conducted, e.g. test1, Phystest, etc.

3.3 Input Data and Fix Directory Structure

Users will need the datasets below as input to HWRF components.

The following lists outline the files needed to initialize forecasts using the operational
configuration. Analysis times are indicated by capital letters, such as YYYYMMDDHH or
HH, and forecast hours are indicated by lower-case letters, i.e. hhh. For example,
gfs.2012102806.pgrbf024 is a GFS 24-h forecast in GRIB format whose initial time is October
28 06Z 2012 and would be indicated as gfs.YYYYMMDDHH.pgrbfhhh. The storm identifier,
sid is the storm number and a lower case letter corresponding to the basin (e.g., 18l).

./
DATA/

OCEAN/
gfs.YYYYMMDDHH/YYYYMMDDHH/

WINDS/
gfs.YYYYMMDDHH/

enkf_files/
YYYYMMDDHH/

RECON/
gdas.YYYYMMDD/

SYNDAT-PLUS/
tcvitals.txt.prev.YYYY
syndat_tcvitals.YYYY
investnamed/

38

3. Running HWRF

old/
renumbered/
work/

TDR/
YYYY/YYYYMMDDHH/sid/

fix/
bogus/
hwrf_cpat.ice
hwrf_cpat.moddef
hwrf_cpat.wind
hwrf-crtm/Coefficients for Radiative Transfer
hwrf-crtm-2.1.3/................Updated Coefficients for Radiative Transfer
hwrf_disclaimer.txt
hwrf_eta_micro_lookup.dat
hwrf_fix_datestamp
hwrf-gsi/...GSI fixed files
hwrf-pom/..Ocean init climate data
hwrf_storm_20
hwrf_storm_25
hwrf_storm_cyn_axisy_47
hwrf_storm_cyn_axisy_50_ep
hwrf_storm_radius
hwrf_track
hwrf_wps_geo/ ... Land use fixed files
hwrf-wrf/..Fixed files for WRF
loop_curr/..................................Loop current initialization data

The OCEAN/gfs.YYYYMMDDHH/YYYYMMDDHH directory contains loop current and warm
core ring initialization data, as well as spectral atmospheric analyses in the following four
files.

gfdl_loop_current_rmy5.dat Loop current data
gfdl_loop_current_wc_ring_rmy5.dat Warm core ring data
gfs.tHH.sanl GFS analysis for ocean initialization
gfs.tHH.sfcanl GFS sfc analysis for ocean initialization

The WINDS/gfs.YYYYMMDDHH/ directory contains data for the initialization of the atmo-
sphere. These fall into four categories: observations, text data, gridded data, and spectral
data. The prefix for each file denotes the NWP system from which the data originates.

The following files are considered observations, and are in either BUFR or prepBURF for-
mats. HH is the analysis time and HH-6 is the analysis time six hours prior.

39

3. Running HWRF

gfs.tHH.syndata.tcvitals.tm00 Tropical cylone obs used by GFS
gfs.tHH.prepbufr.nr Conventional obs
gfs.tHH.adpupa.tm00.bufr_d Upper-air obs
gfs.tHH.proflr.tm00.bufr_d Profiler obs
gfs.tHH.SATELLITE.tm00.bufr_d Satellite obs
gdas1.t{HH-6}.abias Time-dep. sat. bias correction
gdas1.t{HH-6}.satang Angle-dep. sat. bias correction

In the list above, SATELLITE can be any of the following, but this is not an all-inclusive list.

1bamua
1bamub
1bhrs3
1bhrs4
1bmhs
esamua
esamub

airsev
goesfv
ascatt
ascatw
atms
avcsam
avcspm

gome
sevcsr
satwind
rassda

The following file is in text (ascii) format.

avn.tHHz.cyclone.trackatcfunix forecast track from GFS

The following files are in gridded binary (GRIB) format.

gfs.tHH.pgrbf00 GFS analysis
gdas1.tHH-6.pgrbh03 3-h forecast from previous 6-h GDAS analysis
gdas1.tHH-6.pgrbh06 6-h forecast from previous 6-h GDAS analysis
gdas1.tHH-6.pgrbh09 9-h forecast from previous 6-h GDAS analysis

The remainder of the files are spectral files in binary format.

gfs.tHH.sfcanl GFS surface analysis
gfs.tHH.sanl GFS atmospheric analysis
gfs.tHH.sfhhh (one for each fcst hour from 0 to 126 in 3 h increments)
gdas1.tHH-6.sf03 3-h forecast from previous 6-h GDAS analysis
gdas1.tHH-6.sf06 6-h forecast from previous 6-h GDAS analysis
gdas1.tHH-6.sf09 9-h forecast from previous 6-h GDAS analysis

The enkf_files/YYYYMMDDHH/ directory contains the GFS Ensemble spectral data to
provide ensemble information for data assimilation. There are eighty files named,

sfg_YYYYMMDDHH_fhrhhs_mem{mmm},

where mmm is the 3-digit ensemble member ID and ranges from 1 to 80.

The SYNDAT-PLUS directory contains the TC Vitals files for several years.

The RECON/gdas.YYYYMMDD directory contains aircraft reconnaissance data in BUFR for-
mat and some additional files with metadata. Files are named by the following conventions.

40

3. Running HWRF

gdas1.tHH.SID.hdob.tm00.bufr_d
gdas1.tHHz.status_hdob.tm00.bufr_d

The TDR/YYYY/YYYYMMDDHH/SID directory contains tail Doppler radar data in BUFR for-
mat in a file named as follows.

gdas1.tHHz.tldplr.tm00.bufr_d

The fix files are time-independent and are included in the following directories.

• bogus/

hwrf_ofs_atl.A12grid.dat
hwrf_ofs_atl.intp_pars.dat
hwrf_ofs_atl.ismus_msk1152x576.dat
hwrf_ofs_atl.ismus_msk384x190.dat
hwrf_ofs_atl.ismus_msk512x256.dat
hwrf_ofs_atl.ismus_msk768x384.dat
hwrf_ofs_atl.ncep1_12.regional.depth.a
hwrf_ofs_atl.ncep1_12.regional.depth.b
hwrf_ofs_atl.ncep1_12.regional.grid.a
hwrf_ofs_atl.ncep1_12.regional.grid.b
hwrf_ofs_atl.ncep1_12.regional.mask.a
hwrf_ofs_atl.ncep1_12.regional.mask.b

• hwrf-crtm-2.1.3/

AerosolCoeff/
CloudCoeff/
EmisCoeff/
SpcCoeff/
TauCoeff/

• hwrf-gsi/

anavinfo_hwrf
anavinfo_hwrf_d2
atms_beamwidth.txt
bufrtab.012
global_ozinfo.txt
global_scaninfo.txt
hwrf_convinfo.txt
hwrf_hybens_d01_locinfo
hwrf_hybens_d01_locinfo_l76

hwrf_nam_errtable.r3dv
hwrf_satinfo.txt
nam_glb_berror.f77.gcv
nam_global_pcpinfo.txt
nam_global_satangbias.txt
prepobs_errtable.hwrf
prepobs_prep.bufrtable

• hwrf-pom/ – [#-#] represents multiple files numbered consecutively, e.g. [01-12]
means there are twelve files with a two-digit number ranging from 01-12 replacing the
string within the brackets.

gfdl_albedo.fall
gfdl_albedo.spring
gfdl_albedo.summer
gfdl_albedo.winter

gfdl_datainp1
gfdl_datainp1.l42
gfdl_datainp2
gfdl_disclaimer.txt

41

3. Running HWRF

gfdl_fildef.afos
gfdl_fildef.sdm
gfdl_fort.7
gfdl_fort.7.l42
gfdl_gdem.[00-13].ascii
gfdl_Hdeepgsu.eastatl
gfdl_Hdeepgsu.united
gfdl_height
gfdl_huranal.data
gfdl_initdata.eastatl.[01-12]
gfdl_initdata.gdem3.united.[05-12]
gfdl_initdata.gdem.united.[01-12]
gfdl_initdata.levit.united.[05-12]
gfdl_initdata.united.[01-12]
gfdl_limit_2nest_dat_x.1
gfdl_limit_2nest_dat_x.5
gfdl_limit_2nest_dat_x.6
gfdl_limit_2nest_dat_y.1
gfdl_limit_2nest_dat_y.12
gfdl_limit_2nest_dat_y.15
gfdl_limit_2nest_dat_y.16
gfdl_limit_2nest_dat_y.6

gfdl_ocean_dat
gfdl_ocean_readu.dat.[01-12]
gfdl_ocean_spinup.BAYuf
gfdl_ocean_spinup.FSgsuf
gfdl_ocean_spinup_gdem3.dat.
[01-12]
gfdl_ocean_spinup_gspath.[01-12]
gfdl_ocean_spinup.SGYREuf
gfdl_ocean_topo_and_mask.eastpac_x.
lores
gfdl_ocean_topo_and_mask.transatl.
lores
gfdl_ocean_topo_and_mask.united
gfdl_pctwat
gfdl_raw_temp_salin.eastpac.
[04-12]
gfdl_wetness
gfdl_znot
sgdemv3s[01-12].nc
tgdemv3s[01-12].nc

• hwrf_wps_geo

albedo_ncep/
greenfrac/
hangl/
hanis/
hasynw/
hasys/
hasysw/
hasyw/
hcnvx/
hlennw/
hlens/
hlensw/
hlenw/
hslop/
hstdv/
hzmax/
islope/
landuse_10m/
landuse_2m/
landuse_30s/
landuse_30s_with_lakes/
landuse_5m/
maxsnowalb/
modis_landuse_20class_30s/

modis_landuse_21class_30s/
orogwd_10m/
orogwd_1deg/
orogwd_20m/
orogwd_2deg/
orogwd_30m/
soiltemp_1deg/
soiltype_bot_10m/
soiltype_bot_2m/
soiltype_bot_30s/
soiltype_bot_5m/
soiltype_top_10m/
soiltype_top_2m/
soiltype_top_30s/
soiltype_top_5m/
ssib_landuse_10m/
ssib_landuse_5m/
topo_10m/
topo_2m/
topo_30s/
topo_5m/
varsso/

• hwrf-wrf

aerosol.formatted
aerosol_lat.formatted
aerosol_lon.formatted
aerosol_plev.formatted
co2_trans
ETAMPNEW_DATA

ETAMPNEW_DATA_DBL
ETAMPNEW_DATA.expanded_rain
ETAMPNEW_DATA.expanded_rain_DBL
GENPARM.TBL
LANDUSE.TBL
MPTABLE.TBL

42

3. Running HWRF

ozone.formatted
ozone_lat.formatted
ozone_plev.formatted
README.fix
RRTM_DATA
RRTM_DATA_DBL
RRTMG_LW_DATA
RRTMG_LW_DATA_DBL
RRTMG_SW_DATA

RRTMG_SW_DATA_DBL
SOILPARM.TBL
tr49t67
tr49t85
tr67t85
URBPARM.TBL
URBPARM_UZE.TBL
VEGPARM.TBL

• loop_curr
hwrf_gfdl_loop_current_rmy5.dat.YYYYMMDD
hwrf_gfdl_loop_current_wc_ring_rmy5.dat.YYYYMMDD

Sample fix files and datasets for running two consecutive forecasts of Hurricane Sandy
(October 28, 2012 06 and 12 UTC) can be obtained from the DTC website: http://www.
dtcenter.org/HurrWRF/users. In order to use the DTC-supported scripts for running
HWRF, these datasets should be stored following the directory structure described above,
and must be on a disk accessible by the HWRF scripts and executables.

The following files are available for download.
HWRF_v3.6a_datasets_ensemble.tar.gz
HWRF_v3.6a_datasets_gfs_2012102800.tar.gz
HWRF_v3.6a_datasets_gfs_2012102806.tar.gz
HWRF_v3.6a_datasets_gfs_2012102812.tar.gz
HWRF_v3.6a_datasets_gfsgrib_2012102806.tar.gz
HWRF_v3.6a_datasets_gfsgrib_2012102812.tar.gz
HWRF_v3.6a_datasets_TDR-RECON.tar.gz
HWRF_v3.6a_datasets_SYNDAT-PLUS.tar.gz
HWRF_v3.6a_datasets_ocean.tar.gz
HWRF_v3.6a_fix.tar.gz

3.4 Production Directory Structure

The top production directory is ${WORKhwrf}/YYYYMMDDHH/SID (where ${WORKhwrf} is
an environment variable defined by the scripts, SID is storm ID (e.g., 09L), and YYYYMMDDHH
is the forecast initial time. The following sub-directories will be present for the default
operational configuration.

43

http://www.dtcenter.org/HurrWRF/users
http://www.dtcenter.org/HurrWRF/users

3. Running HWRF

${WORKhwrf}/YYYYMMDDHH/SID
fgat.tYYYYMMDDHHHH/.....................Production dir for processing GDAS at each of the fgat hours: -3, 0 +3

ghost/

prep_hybrid/

realinit/

relocate/

regribber/

tracker/

wps/

wrfanl/

gdas1.YYYYMMDDHH/...Production dir for merging grids after GSI

gfsinit/ ... Production dir for processing GFS input

ghost/

prep_hybrid/

realfcst/

realinit/

relocate/

regribber/

tracker/

wps/

wrfanl/

gsi_d02/..Production dir for data assimilation on 9 km domain

gsi_d03/..Production dir for data assimilation on 3 km domain

intercom/ ...Dir containing files needed for subsequent processes

pom/...Production dir for the ocean initialization

regribber/..................................Working dir for regribbing process. All files are delivered to other locations

runwrf/†..Production dir for coupled or uncoupled forecast

tracker/..Production dir for the GFDL Vortex Tracker

storm1.vitals....Text file containing TC Vitals for forecast storm, including only the current storm label, i.e. 18L for Sandy

storm1.vitals.allidsText file containing TC Vitals for forecast storm, including its Invest labels, i.e. 99L and 18L for Sandy

storm1.vitals.oldid...Text file containing TC Vitals for forecast storm, including only its Invest labels, i.e. 99L for Sandy

storm1.vitals.renumberlog...Log file for vitals messages processed

tmpvit...Text file containing only the analysis TC Vital message

oldvit...Text file containing only the 6-h previous TC Vital message

PDY..Text file with date information

hwrf_state.sqlite3..Datastore file

hwrf_state.sqlite3.lock
† When the forecast is uncoupled, the production directory for the forecast is named
wrfatmos/.

The purpose of intercom/ is to store the files that are used for subsequent processes,
separating them from the working directory. Within the intercom/ directory, the structure
is similar to that in the ${WORKhwrf} directory, except each subdirectory contains only the
files that will be used in subsequent steps. The following outlines the structure of intercom/
when running all components of HWRF as in operations.

intercom/
fgat.tYYYYMMDDHHHH/

44

3. Running HWRF

gdas_merge/
gfsinit/
gsi_d02/
gsi_d03/
nonsatpost-f{hh}h00m/

nonsatpost-fhhh00m-moad.egrb
nonsatpost-fhhh00m-storm1inner.egrb
nonsatpost-fhhh00m-storm1outer.egrb

pom/
regribber/
{STORMNAME}{SID}.YYYYMMDDHH.hwrfprs_GRID.grbfhh
{STORMNAME}{SID}.YYYYMMDDHH.hwrfsat_GRID.grbfhh
{STORMNAME}{SID}.YYYYMMDDHH.hwrftrk.grbfhh
{STORMNAME}{SID}.YYYYMMDDHH.hwrftrk.grbfhh.grbindex
satpost-f{hh}h00m/

satpost-fhhh00m
satpost-fhhh00m-moad.egrb
satpost-fhhh00m-storm1inner.egrb
satpost-fhhh00m-storm1outer.egrb

Additionally, some output files are transferred to the com/ directory, which is reserved for
transfer of files between cycled and for delivery of final products (in an operational setting).
This is discussed in Chapter 11.

In the list above, GRID is a single letter, c, i, m, n, or p, which are grids with various
domains and grid spacings used for regribbing the HWRF forecast for delivery and product
generation. In this context, moad stands for Mother Of All Domains, or the HWRF parent
grid. Conversely, outer and inner refer to the 9-km and 3-km nests. More information
about the contents of each grid is described in Section 11.2.1.

3.5 Scripts for Running HWRF

It is recommended that HWRF v3.6a be run using the wrapper and Python scripts provided
with the HWRF v3.6a release. In scripts/, users can find mid-level Python scripts that call
HWRF-specific Python utilities located in ush/. The user is encouraged to run the scripts
in the scripts/ directory using the wrapper scripts located in wrappers/. The wrapper
scripts set the proper environment variables to run each Python script, as well as execute
multiple iterations as needed.

3.5.1 Submitting a Job

Some of the executables are parallel code and can only run on the computation nodes. We
recommend that users first connect to the computer’s remote computation nodes. To do this
on Linux machines that run the MOAB/Torque, such as NOAA’s Jet, users can use the qsub

45

3. Running HWRF

command. For example, the command below requests a two-hour connection of 24 cores on
the "sJet" nodes using the account "dtc-hurr".

qsub -X -I -l procs=24,walltime=2:00:00,partition=sjet -A dtc-hurr

The user should seek assistance from the system administrator on how to connect to the
computation nodes on the machine used to run HWRF.

Parallel code can also be submitted to the computation nodes using a batch system. For
a platform that uses the batch system Load Sharing Facility (LSF), the beginning of each
wrapper script should be edited to add the LSF options listed below.

#BSUB -P 99999999 # Project 99999999
#BSUB -a poe # select poe
#BSUB -n 202 # number of total (MPI) tasks
#BSUB -R "span[ptile=32]" # run a max of 16 tasks per node
#BSUB -J hwrf # job name
#BSUB -o hwrf.%J.out # output filename
#BSUB -e hwrf.%J.out # error filename
#BSUB -W 2:30 # wallclock time
#BSUB -q debug # queue
#BSUB -K # Don’t return prompt until the job is fin-

ished

For a platform that uses the MOAB/Torque batch system, the beginning of each wrapper
script should be edited to add the PBS options listed:

#PBS -A project # Project name
#PBS -l procs=202 # number of total (MPI) tasks
#PBS -o stdout.txt # Output filename
#PBS -e stder.txt # Error filename
#PBS -N hwrf # Job name
#PBS -l walltime=02:30:00 # Wallclock time
#PBS -q batch # Queue name
#PBS -d . # Working directory of the job

After the batch system options and environment variables are defined, run the wrapper
scripts using the command:

• On machines with LSF:
bsub < sample_wrapper

• On machines with MOAB/Torque:
qsub sample_wrapper

The wrapper script sample_wrapper will be submitted to the computation nodes and, once
it starts, will call the low-level script from the scripts/ directory. Appendix A contains
the guidelines for resources used to run HWRF at near operational efficiency.

46

3. Running HWRF

3.5.2 Running HWRF End-to-End

Once all configure files have been edited to define an experiment, the wrapper scripts should
be submitted. Some of the wrappers have dependencies on previous wrappers, while others
can be run simultaneously. In the following list, the items under the same number can
be submitted together in any order, but only after the previous numbered item(s) runs to
completion.

1. launcher_wrapper
2. init_gdas_wrapper

init_gfs_wrapper
init_ocean_wrapper

3. relocate_wrapper
4. gsi_d02_wrapper

gsi_d03_wrapper
5. merge_wrapper
6. unpost_wrapper
7. forecast_wrapper

post_wrapper†

products_wrapper†

†Wrapper can run at the same time as forecast_wrapper, but should only be submitted
after the forecast job has started, i.e. no loner in queue.

Wrappers with the same number may be run sequentially or simultaneously. Because the
forecast job often waits in the queue before it starts, a post job submitted at the same time as
the forecast job will have nothing to do for quite a while and will use wallclock time waiting
on output from the forecast. Therefore, it is suggested to submit the post and products
wrappers after the forecast job has started running.

By default, the launcher_wrapper reads in the configure files system.conf,
hwrf.conf, hwrf_input.conf, and hwrf_basic.conf. Additional variables and
configure files can be passed to exhwrf_launcher.py within the launcher_wrapper
by following the syntax documented within the Python script. If anything is defined more
than once, the variable will take the value that was last passed to exhwrf_launcher.py.

3.6 Running HWRF in Non-operational Configurations

Users may wish to run HWRF with a subset of the components used in operations. This
section will describe a few of the alternative options that are supported using HWRF v3.6a.

47

3. Running HWRF

3.6.1 Running without Spectral Files (GRIB Only)

In order to run with GRIB input files only, the hwrf_basic.conf file should be edited to
set the following variables.

use_spectral=no
run_gsi=no

When running with GRIB files only, GSI data assimilation is not supported and should
also be turned off in the configure file. Before submitting launcher_wrapper, edit the
file to add the parm/hwrf_gfs_pgrb2.conf configure file as the last argument to the
line calling the exhwrf_launcher.py script. The wrapper scripts init_gdas_wrapper,
gsi_d02_wrapper, gsi_d03_wrapper, and merge_wrapper should be skipped. The
relocation of the vortex will take place on the GFS input only. Note that the output will
be altered to reflect these changes and not all files present in the operational configuration
documented in later chapters will be produced.

3.6.2 Running an Uncoupled Forecast

Coupling with the ocean is only supported on the North Atlantic and Eastern North
Pacific basins. In order to run an uncoupled forecast (no ocean) in any basin, you
must first edit hwrf_basic.conf to set run_ocean=no. For uncoupled forecasts, the
init_ocean_wrapper should not be run. This will change the output so that not all the
files documented in later chapters will be produced.

3.6.3 Running without GSI

Running without GSI is nearly identical to the option presented in Section 3.6.1 for run-
ning with only GRIB input files, with the exception that use_spectral can be set to
"yes" in hwrf_basic.conf. The following wrappers need not be run: init_gdas,
gsi_d02_wrapper, gsi_d03_wrapper, and merge_wrapper. The output from this con-
figuration will not match that documented in later chapters.

3.6.4 Running without Relocation

HWRF v3.6a is not configured to run with GSI and without relocation, i.e. the
hwrf_basic.conf variables cannot be set as follows.

run_gsi=yes
run_relocate=no

If the user would prefer to run HWRF without vortex relocation, GSI must also be turned off.

48

3. Running HWRF

See Section 3.6.3 for specifics on running without GSI; in addition, the relocate_wrapper
should be skipped.

49

4
HWRF Preprocessing System

4.1 Introduction

HWRF needs data from the operational GFS and GDAS for its initialization procedures.
Ultimately, the GFS dataset is used to create initial and boundary conditions for the 27-km
outer domain, while the GDAS dataset is used to initialize the inner 9- and 3-km domains.
However, as will be explain later, the GDAS analysis and forecast is also used in the 27-km
domain for an intermediate step.

The GFS analysis and forecast employed are from the same cycle as the HWRF initialization
(e.g., to initialize a HWRF forecast at 12 UTC, the 12 UTC run of GFS is used). However, the
GDAS analysis and forecast used by HWRF is from the 6-h previous cycle (e.g., to initialize a
HWRF forecast at 12 UTC, the 06 UTC run of GDAS is used). This differentiation is related
to the data assimilation procedures (Chapter 6). First of all, data assimilation in HWRF is
only conducted in the inner 9- and 3-km domains, and a forecast from the GDAS initialized
6-h before the HWRF analysis provides a better first guess than the GDAS analyses, in which
observations have already been included as part of the global data assimilation procedures.
Second, the HWRF Data Assimilation System (HDAS) ingests observations in a 3-h time
window centered in the HWRF analysis time. This requires the availability of three first-
guess files, one at the HWRF analysis time, one before and one after. By using the GDAS
forecast initialized 6-h before the HWRF analysis, HWRF can make use of the GDAS 3-, 6-,
and 9-h forecast lead times, which are valid at 3 h before the HWRF initialization, at the
time of the HWRF initialization, and 3 h after the HWRF initialization, respectively. This
procedure is termed FGAT, or First Guess at Appropriate Time.

HWRF employs the WRF model to downscale the GDAS forecasts to the 9- and 3-km grids
for the vortex relocation and data assimilation procedures. This is done by using preprocess-

50

4. HWRF Preprocessing System

D01 D02 D03
Grid spacing (deg) 0.18

(27 km)
0.06
(9 km)

0.02
(3 km)

HWRF Forecast 216 x 432
80◦x 80◦

106 x 204
12◦x 12◦

198 x 354
7.1◦x 7.1◦

Analysis run 216 x 432
80◦x 80◦

106 x 204
12◦x 12◦

198 x 354
7.1◦x 7.1◦

Ghost run 216 x 432
80◦x 80◦

166 x 336
24◦x 24◦

250 x 500
20◦x 20◦

3X domain 748 x 1504
30◦x 30◦

Table 4.1: Resolution (first row), number of grid points (top number in cell), and size (bottom
number in cell) of the HWRF atmospheric grids.

ing utilities to interpolate the GDAS datasets to the HWRF 27-km domain, and then running
two uncoupled 90-s WRF runs with three domains. These runs output "analysis" files, which
are WRF restart files at t=0 (analysis time), and are referred to as the WRF Analysis run and
the WRF Ghost run.

In HWRF operations at the National Weather Service, it is important that safeguards are
put in place to prevent model failure. To account for the possibility that the GDAS dataset
may be unavailable, WRF Ghost and WRF Analysis runs using the GFS dataset as initial
conditions are also performed and can be used as a backup. In general, GDAS data is
available, and the WRF Ghost and WRF Analysis runs initialized from the GFS are not
ultimately used in the forecast process.

The WRF Analysis run has the main purpose of downscaling the global information to
the HWRF high-resolution grids for use in the vortex relocation procedure discussed in
further detail in Chapter 5. The WRF Ghost run downscales the global information to
high-resolution grids that are slightly larger than their WRF forecast domain counterparts
to provide first-guesses for the data assimilation procedure discussed further in Chapter 6.
Depending on the domain, the WRF Ghost run is referred to as Ghost domain 2 (ghost_d02,
the d02 counterpart) or Ghost domain 3 (ghost_d03, the d03 counterpart). Table ?? describes
the grid spacing and size of the domains used in the HWRF main forecast run, the WRF
Analysis, and the WRF Ghost runs. These domains are shown in Figure 4.1.

The HWRF includes two preprocessing packages to generate input files for WRF, the WRF
Preprocessing System (WPS) and prep_hybrid. WPS consists of three programs to process
input: geogrid interpolates static geographical data to the three HWRF domains; ungrib
extracts meteorological fields from GRIB-formatted files and writes the fields to intermediate
files; and metgrid horizontally interpolates the meteorological fields extracted by ungrib to
the parent HWRF grid. The prep_hybrid utility horizontally interpolates the atmospheric
fields represented as spectral coefficients in the global model files in binary format and native
sigma vertical levels to the parent HWRF grid. The output of prep_hybrid and metgrid are
utilized by the program real_nmm to vertically interpolate meteorological information to
the HWRF vertical levels, resulting in a full set of 3D initial conditions that constitute
the required WRF input. Both prep_hybrid and WPS are required because prep_hybrid

51

4. HWRF Preprocessing System

Figure 4.1: Example of the domains used by HWRF in the North Atlantic Basin. The blue
region is the outer 27-km domain. The purple solid boxes show the sizes of the
vortex-following 9-km and 3-km domains, while the black dashed lines are the
ghost domains for d02 and d03. The red box is the unified Atlantic MPIPOM-TC
domain.

52

4. HWRF Preprocessing System

only processes atmospheric data, so WPS is used to supply the initial conditions for soil
temperature and moisture, as well as to supply the WRF model with the static information
(topography, vegetation, etc.).

For general information about working with WPS, see the WRF-NMM documentation at

http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/V3/users_guide_nmm_
chap1-7.pdf

As part of the vortex initialization procedure described in Chapter 5, the vortex from the
processed global model analysis is removed and substituted with an improved vortex. In
order to locate the vortex in the global model, the GFDL Vortex Tracker is run at the
analysis time on the post-processed 90-s output from the WRF Analysis run.

This chapter explains how to run the initialization procedure, including the launcher, WPS,
prep_hybrid, real_nmm, WRF Analysis, and WRF Ghost to create the HWRF preliminary
initial conditions.

4.2 Scripts

Three wrapper scripts are used to preprocess data for the atmospheric component of HWRF.

launcher_wrapper
init_gdas_wrapper
init_gfs_wrapper

The launcher wrapper calls scripts/exhwrf_launch.py to read the configuration files,
set the output directory structures, and determine the location of the outer 27-km domain.
The "init" wrapper scripts call the Python script scripts/exhwrf_init.py. For process-
ing the GFS data, exhwrf_init.py is called once, and then three more times for processing
GDAS data – once at each FGAT hour (3, 6, 9). Figures 4.2, 4.3, and 4.4 show the simplified
outline of the processes that occur at each FGAT hour for both the GFS and GDAS initial-
ization. The script exhwrf_init.py runs the three stages of WPS (geogrid, ungrib, and
metgrid), prep_hybrid, real_nmm (to create initial and boundary conditions for the WRF
Ghost and WRF Analysis runs), wrfghost, wrfanalysis, post, gribber, tracker, and realfcst (to
create LBCs for the main forecast run). All these steps are needed for WRF initialization,
and some of these are used again at later stages of the run (for example, post and tracker).

53

http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/V3/users_guide_nmm_chap1-7.pdf
http://www.dtcenter.org/wrf-nmm/users/docs/user_guide/V3/users_guide_nmm_chap1-7.pdf

4. HWRF Preprocessing System

hwrfbcs_1

real

GDAS 6h
previous

3-h forecast

ungrib

met_nmm_d01

GDAS 6h
previous

3-h forecast

prep_hybrid

hwrfinit_0

metgrid

wrfbdy_d01wrfinput_d01

WRF analysis

wrfanl_d03wrfanl_d02

WRF ghost

wrfghost_d03

vortex adjustment

ghost_d02 wrfinput_d01

wrfghost_d02

ghost_d03

FORTRAN Binary

GRIB

NetCDF

Color coding for file formats

hwrfbcs_0

exhwrf_init.py for GDAS FGAT=3

HWRF Initialization - 3 h Prior

Figure 4.2: Simplified initialization procedures for the FGAT=3 valid 3 hours prior to HWRF
initialization. All processes in the black box are run by calling exhwrf_init.py
for GDAS at FGAT=3. Boxes with dashed outlines indicate modules and resulting
files that are discussed in Chapter 5. Files that are outlined in heavy purple
(dashed or solid) are used by subsequent processes described by Figure 6.1.

54

4. HWRF Preprocessing System

wrfanl_d03

hwrfbcs_1

real

GDAS 6h
previous

6-h forecast

ungrib

met_nmm_d01

GDAS 6h
previous

6-h forecast

prep_hybrid

hwrfinit_0

metgrid

wrfbdy_d01wrfinput_d01

WRF analysis

wrfanl_d02

WRF ghost

wrfghost_d02

vortex adjustment

ghost_d02 wrfinput_d01

prep_hybridprep_hybrid

hwrfnit_0 hwrfbcs_1…N

real

wrfbdy_d01

GFS Current
Analysis

GFS current
N-h forecast

wrfinput_d01

wrfghost_d03

ghost_d03

HWRF Initialization - Analysis Time

FORTRAN Binary

GRIB

NetCDF

Color coding for file formats

hwrfbcs_0

GFS Current
Analysis

ungrib

met_nmm_d01

metgrid

exhwrf_init.py for GDAS FGAT=6 exhwrf_init.py for GFS FHR=0

Figure 4.3: Simplified initialization procedures for the HWRF analysis time. All processes
in the black box on the left are run by calling exhwrf_init.py for GDAS
at FGAT=6, while the right black box are procedures from running exh-
wrf_init.py for GFS at analysis time. Boxes with dashed outlines indicate
modules and resulting files that are discussed in Chapter 5. Files that are outlined
in heavy purple (dashed or solid) are used by subsequent processes described by
Figure 6.1.

55

4. HWRF Preprocessing System

FORTRAN Binary

GRIB

NetCDF

Color coding for file formats

hwrfbcs_1

real

GDAS 6h
previous

9-h forecast

ungrib

met_nmm_d01

GDAS 6h
previous

9-h forecast

prep_hybrid

hwrfinit_0

metgrid

wrfbdy_d01wrfinput_d01

WRF analysis

wrfanl_d03wrfanl_d02

WRF ghost

wrfghost_d03

vortex adjustment

ghost_d02 wrfinput_d01

wrfghost_d02

ghost_d03

hwrfbcs_0

HWRF Initialization - 3 h After Analysis
exhwrf_init.py for GDAS FGAT= 9

Figure 4.4: Simplified initialization procedures for the FGAT=9 valid 3 hours after HWRF
initialization. All processes in the black box are run by calling exhwrf_init.py
for GDAS at FGAT=9. Boxes with dashed outlines indicate modules and resulting
files that are discussed in Chapter 5. Files that are outlined in heavy purple
(dashed or solid) are used by subsequent processes described by Figure 6.1.

4.2.1 Overview of exhwrf_launch.py

1. Read in configure files from parm/ directory
2. Set the paths to the directories containing HWRF source code and to the Python

scripts ($HOMEhwrf and $USHhwrf, respectively)
3. Set the storm ID
4. Initialize the directory structure for the HWRF workflow
5. Locate and extract TC Vitals for the current storm and cycle, then write information

to $WORKhwrf
6. Using TC Vitals, determine the domain center and write output to file

storminfo.hwrf_domain_center

56

4. HWRF Preprocessing System

7. Parse the configuration files and write configure and holdvars files to com/
8. Write a startfile to the launch directory (i.e. wrappers/)

Output files:

$startfile Name is defined in global_vars.ksh. Contains
environment variables for the storm ID and paths
to output data

storm1.conf Located in com/ directory. Contains configuration
information compiled from all configure files

storm1.holdvars.txt Located in com/ directory. Only used in opera-
tional implementation of HWRF

SID.YYYYMMDDHH.domain.center Coordinates of the domain center. SID is the storm
ID, i.e. 18L for Sandy (2012), and YYYYMMDDHH is
the analysis time

Status check:

The file $startfile defined in global_vars.ksh has been written in the wrappers/
directory.

Usage:

The following options are mandatory when running exhwrf_launch.py.

exhwrf_launch.py YYYYMMDDHH STID case_root /path/to/parm

In the previous command, YYYYMMDDHH should be replaced by the date to run, STID rep-
resents the storm ID, i.e. 18L for Sandy (2012), and case_root is replaced with HISTORY
for retrospective runs and FORECAST for real-time runs. Many additional arguments are
provided within the wrapper, but the options provided do not constitute an exhaustive list
of arguments that could be passed to the Python script. Additional arguments may be in-
cluded with the submission of exhwrf_launch.py by editing the launcher_wrapper.
The launcher_wrapper included with HWRF v3.6a submits exhwrf_launch.py with
the following arguments.

${HOMEhwrf}/scripts/exhwrf_launch.py YYYYMMDDHH STID HISTORY \
${HOMEhwrf}/parm config.startfile=STARTFILE dir.HOMEhwrf=${HOMEhwrf} \
config.EXPT=EXPT config.case_root=HISTORY

In the previous command, ${HOMEhwrf} is set in the wrapper to the path where HWRF is
installed, STARTFILE is the launcher output file, and EXPT is the chosen experiment name.
The wrapper passes many of the values through environment variables, but values can also
be directly passed.

There are three ways to pass configuration variables to the script exhwrf_launch.py.

• Customize the variables in the configuration files in the parm/ directory.
• Create your own configuration files and pass them to the script by adding the path to
the additional files.

57

4. HWRF Preprocessing System

../parm/my_hwrf_config.conf
• Pass configuration variables in the command line. The following example would turn
off GSI data assmilation.

config.run_rungsi=no

4.2.2 Overview of the Init Scripts: exhwrf_init.py and Wrappers

In the following list, top-level numbers are calls from the wrapper, either
init_gdas_wrapper or init_gfs_wrapper, the alphabetic level represents calls from
the script exhwrf_init.py, and the lowest level are calls to modules from within init.py.

1. Initialize the objects used to run all components of HWRF by calling
hwrf_expt.init_module()

2. Call exhwrf_init.py to process the global input files using INIT_PARTS=ALL four
times. Once for GFS at analysis time from init_gfs_wrapper, then once for each
FGAT hour for GDAS from init_gdas_wrapper
a) Run initialization steps leading up to the WRF Analysis (run_through_anl())

i. geogrid
ii. ungrib
iii. metgrid
iv. prep_hybrid
v. realinit
vi. runwrfanl

b) Run additional initialization steps needed for data assimilation
(run_init_after_anl())
i. ghost
ii. post
iii. gribber
iv. tracker

c) Run steps necessary to generate the LBCs for the main forecast (run_real_bdy())
i. ungrib
ii. metgrid
iii. prep_hybrid
iv. realfcst

4.2.3 Overview of Initialization Modules

Geogrid

The run module for a Geogrid object resides in ush/hwrf/wps.py. The module performs
the following tasks.

1. Link the GEOGRID.TBL and geog_data/ fixed files
2. Create the namelist

58

4. HWRF Preprocessing System

3. Run geogrid.exe

Output files:

geo_nmm.d01.nc Static geographical data for the parent domain,
with grid spacing of 0.18 degrees.

geo_nmm_nest.l01.nc Static geographical data that covers the parent do-
main, with grid spacing of 0.06 degrees.

geo_nmm_nest.l02.nc Static geographical data that covers the parent do-
main, with grid spacing of 0.02 degrees.

Status Check:

In the standard out file of an initialization task, you will find the line "CRITICAL: WPS
Geogrid completed."

Executables:

geogrid.exe

FUNCTION Interpolates static geographical data to the parent and nest grids

INPUT Fix files from ${GEOG_DATA_PATH}
GEOGRID.TBL – defines parameters of input data sets
namelist.wps – WPS namelist

OUTPUT geo_nmm.d01.nc
geo_nmm_nest.l01.nc
geo_nmm_nest.l02.nc

USAGE geogrid.exe

PrepHybrid

The run module for the PrepHybrid object is located in ush/hwrf/prep.py. The module
preforms the following tasks.

1. Copy the input files
2. Run hwrf_prep.exe
3. Link the output files

Output files for ICs:

hwrfinit_00 Global model spectral data preprocessed by
hwrf_prep.exe and ready to be used by
real_nmm to generate preliminary HWRF ICs.

59

4. HWRF Preprocessing System

Output files in for LBCs:

hwrfbcs00_${bc_index} Global model spectral data preprocessed by
hwrf_prep.exe and ready to be used by
real_nmm to generate preliminary HWRF LBCs.
The variable bc_index=0,1,..,n corresponds to the
forecast files that need to be preprocessed to create
the LBCs for the HWRF forecast.

Status Check:

In the standard output file of the initialization task, you will find the line "INFO: - exit
status 0" for the task "prep_hybrid".

Executables:

hwrf_prep.exe

FUNCTION Preprocesses the GDAS or GFS spectral data on vertical sigma
levels in binary format for use the by real_nmm

INPUT geogrid.out – link to geo_nmm.d01.nc
prep_hybrid.nl – prep_hybrid namelist
fort.11 – link to gfsbc${bc_index}
fort.44 – link to itime file contains $bc_index
fort.45 – link to domain.center file
gfsbc${bc_index} – link to the global spectral file
[gdas1|gfs].${BKG_START_TIME}.sf${BKG_FCST_TIME}
where $BKG_START_TIME is the GDAS or GFS initialization time
and $BKG_FCST_TIME is time the GDAS or GFS forecast lead
time. For example to create the 12-h LBCs for the HWRF forecast
initialized at 2012102806, the GFS initialized at the HWRF anal-
ysis time is used, and these variables would be set to the following.

BKG_START_TIME = 2012102806
BKG_FCST_TIME = 012

OUTPUT hwrfinit_0
hwrfbcs00_${bc_index}

USAGE $PREP_EXE $NX1 $NY1 $VERT_LEV $DXX $DYY
where $NX1, $NY1, and $VERT_LEV are the output file grid di-
mensions in the meridional, zonal and vertical directions, and
$DXX and $DYY are the horizontal grid spacing.s

60

4. HWRF Preprocessing System

Ungrib

The run module for an Ungrib object resides in ush/hwrf/wps.py. The module performs
the following tasks.

1. Create the namelist
2. Link the Vtable and input GRIB files
3. Run ungrib.exe

Output files:

The intermediate files written by ungrib.exe will have names of the form FILE:YYYY-
MM-DD_HH (unless the prefix variable in hwrf.conf was set to a prefix other than "FILE").

Status Check:

In the standard out file of an initialization task, you will find the line "CRITICAL: WPS
Ungrib completed."

Executables:

ungrib.exe

FUNCTION Extracts meteorological fields from GRIB formatted files and
writes the fields to intermediate files

INPUT GRIB files
Vtable – codes to interpret GRIB files
namelist.wps –WPS namelist

OUTPUT FILE:YYYY-MM-DD_HH

USAGE ungrib.exe

Metgrid

The run module for a Metgrid object resides in ush/hwrf/wps.py. The module performs
the following tasks.

1. Create the namelist
2. Link the metgrid table
3. Copy in the output from geogrid and ungrib
4. Run metgrid.exe

Output files:

61

4. HWRF Preprocessing System

met_nmm.d01.YYYY-MM-DD_HH:MM:SS.nc YYYY- MM-DD_HH:MM:SS refers to
the valid date of the interpolated
data in each file.

Status Check:

In the standard out file of an initialization task, you will find the line "CRITICAL: WPS
Metgrid completed."

Executables:

metgrid.exe

FUNCTION Horizontally interpolates the meteorological fields extracted by
ungrib to the model parent grid

INPUT METGRID.TBL – parameters for interpolating each field
geo_nmm.d01.nc – output of geogrid
namelist.wps – WPS namelist
FILE:YYYY-MM-DD_HH – output of ungrib

OUTPUT met_nmm.d01.YYYY-MM-DD_HH:MM:SS.nc

USAGE metgrid.exe

Realinit

Realinit is a WRFTask object and its run module resides in ush/hwrf/wps.py. The module
performs the following tasks.

1. Link the input and fixed files
2. Run hwrf_swcorner_dynamic.exe to calculate the istart and jstart values for a nest
3. Generate the namelist
4. Run real_nmm.exe to generate initial and boundary conditions. A high-resolution

sea-mask data file (fort.65) for the entire outer domain is also generated. It is later
used by the coupler.

Output files:

wrfinput_d01 ICs created from GDAS
wrfbdy_d01 LBCs created from GFS for the ghost and analysis runs
fort.65 High-resolution sea mask data

Status Check:

In the standard output file, you will find the line "/realinit: completed".

62

4. HWRF Preprocessing System

Executables:

real_nmm.exe

FUNCTION Generates the initial and boundary conditions

INPUT Fixed files†

hwrfbcs_[0-21] – BC output of prep_hybrid
hwrfinit_0 – IC output of prep_hybrid
geo_nmm.d01.nc – d01 output from geogrid
geo_nmm.l01.nc – d02 output from geogrid
geo_nmm.l02.nc – d03 output from geogrid
met_nmm.d01.YYYY-MM-DD_HH:00:00.nc – d01 output from
metgrid

OUTPUT fort.65
wrfbdy_d01
wrfinput_d01

USAGE real_nmm.exe

hwrf_swcorner_dynamic.exe

FUNCTION Calculates the lower-left corner of a nest as (i_parent_start,
j_parent_start)

INPUT storm.center – storm center location
domain.center – domain center location
fort.12 (namelist_main.input)

OUTPUT set_nest, which contains the i_parent_start and
j_parent_start. For example the following set_nest file
specifies that the middle nest domain lower-left corner location is
at (99,225) on the parent domain grid.

istart=00099
jstart=00225

USAGE hwrf_swcorner_dynamic.exe

Realfcst

The process for realfcst is the same as realinit, except that realfcst runs for the
length of the HWRF forecast, instead of only at the analysis time.

63

4. HWRF Preprocessing System

Runwrfanl

Runwrfanl is a WRFAnl4Trak object whose run module resides in ush/hwrf/fcsttask.py.
The module performs the following tasks.

1. Link the input and fixed files
2. Run hwrf_swcorner_dynamic.exe to calculate the istart and jstart values for a nest
3. Generate the namelist.input for grids identical to the HWRF forecast grids
4. Run wrf.exe to make a 90-s run of WRF and generate two analysis output files

Output files:

wrfanl_d02_YYYY-MM-DD_HH:HH:HH – "analysis" file for 9-km nest
wrfanl_d03_YYYY-MM-DD_HH:HH:HH – "analysis" file for 3-km nest

Status Check:

In the standard output file, you will find the line "/wrfanl: completed".

Executables:

wrf.exe

FUNCTION Atmospheric model component of HWRF

INPUT Fixed files†

geo_nmm.d01.nc – d01 output from geogrid
geo_nmm.l01.nc – d02 output from geogrid
geo_nmm.l02.nc – d03 output from geogrid
wrfinput_d01 – ICs for parent domain from realinit
wrfbdy_d01 – LBCs for parent domain from realinit
namelist.input – WRF namelist

OUTPUT wrfanl_d02_YYYY-MM-DD_HH:HH:HH
wrfanl_d03_YYYY-MM-DD_HH:HH:HH

USAGE wrf.exe

Runghost

Runghost is a WRFGhost object whose run module resides in ush/hwrf/fcsttask.py.
The module performs the following tasks.

1. Link the input and fixed files
2. Run hwrf_swcorner_dynamic.exe to calculate the istart and jstart values for a nest
3. Generate the namelist.input for the ghost domains

64

4. HWRF Preprocessing System

4. Run wrf.exe to make a 90-s run of WRF and generate two analysis output files

Output files:

wrfanl_d02_YYYY-MM-DD_HH:HH:HH – "ghost" analysis file for 9-km nest

wrfanl_d03_YYYY-MM-DD_HH:HH:HH – "ghost" analysis file for 3-km nest

Status Check:

In the standard output file, you will find the line "/ghost: completed" where YYYYM-
MDDHHHH is the real time of the FGAT hour.

Executables

wrf.exe

FUNCTION Atmospheric model component of HWRF

INPUT Fixed files†

geo_nmm.d01.nc – d01 output from geogrid
geo_nmm.l01.nc – d02 output from geogrid
geo_nmm.l02.nc – d03 output from geogrid
wrfinput_d01 – ICs for parent domain from realinit
wrfbdy_d01 – LBCs for parent domain from realinit
namelist.input – WRF namelist

OUTPUT wrfanl_d02_YYYY-MM-DD_HH:HH:HH
wrfanl_d03_YYYY-MM-DD_HH:HH:HH

USAGE wrf.exe

†Fixed files:

eta_micro_lookup.dat
hwrf_track
aerosol.formatted
aerosol_lat.formatted
aerosol_lon.formatted
aerosol_plev.formatted
co2_trans
ETAMPNEW_DATA
ETAMPNEW_DATA_DBL
ETAMPNEW_DATA.expanded_rain
ETAMPNEW_DATA.expanded_rain_DBL
GENPARM.TBL
LANDUSE.TBL
MPTABLE.TBL
ozone.formatted
ozone_lat.formatted

ozone_plev.formatted
RRTM_DATA
RRTM_DATA_DBL
RRTMG_LW_DATA
RRTMG_LW_DATA_DBL
RRTMG_SW_DATA
RRTMG_SW_DATA_DBL
SOILPARM.TBL
tr49t67
tr49t85
tr67t85
URBPARM.TBL
URBPARM_UZE.TBL
VEGPARM.TBL

65

4. HWRF Preprocessing System

Post

Post is a PostOneWRF object whose run module resides in ush/hwrf/post.py. This
instance of the module runs unipost.exe on the output of the 90-s WRF Analysis run.
The purpose of this step is to de-stagger the HWRF native output, interpolate it vertically
to pressure levels, compute derived variables, and output the result in GRIB format. Further
details about Post objects, modules, and executables can be found in Chapter 10.

Output:

In the intercom/fgat.tYYYYMMDDHHHH/post directory, you will find the following file.

fgat.tYYYYMMDDHHHH_post-moad.egrb

Status check:

The line "INFO: state=COMPLETED" can be found in the GDAS Init standard output file
for the "post" task. Performing a search for both of quoted strings should return one line
for each FGAT hour for GDAS, and once for GFS.

Gribber

Gribber is a GRIBTask object and serves to regrib the output of post, interpolating the 27-km
parent domain GRIB file to a 20◦x 20◦grid. This file is used as input to the GFDL Vortex
Tracker. See Chapter 11 for more details about GRIBTask objects, modules, and executables.

Output:

In the intercom/fgat.tYYYYMMDDHHHH/regribber directory, you will find the files be-
low, where stormname and sid are the name of the storm and the SID in lower case (e.g.,
sandy 18l for Hurricane Sandy):

quarter_degree.grb
stormnamesid.YYYYMMDDHH.hwrftrk.grbf00
stornnamesid.YYYYMMDDHH.hwrftrk.grbf00.grbindex
subset.grb

Status check:

In the standard output file for the GDAS Init wrapper, you will find the following string on the
same line as "regribber" for each FGAT hour: "WARNING: No subtasks incomplete.
I think I am done running. Will exit regribber now."

66

4. HWRF Preprocessing System

Tracker

The GFDL Vortex Tracker is run on the GRIB file resulting from the gribber step above.
The Tracker object resides in ush/hwrf/tracker.py. More information about the tracker
can be found in Section 11.

Output:

In the intercom/fgat.tYYYYMMDDHHHH directory, you will find the file.

gfs.track0.atcfunix – contains the storm center at initial time in the WRF anal-
ysis run output

Status Check:

In the standard output file for GDAS Init, you should fine the line "WARNING: Successful
return status from gettrk." for each FGAT hour.

67

5
Vortex Relocation

5.1 Introduction

The atmospheric component of HWRF, WRF-NMM, needs ICs and LBCs to produce fore-
casts. The GFS and GDAS fields are used to create the preliminary atmospheric fields,
which are further improved through the vortex adjustment procedures and data assimilation
to provide the final IC.

The vortex adjustment procedures are necessary because the initial vortex is often not real-
istically represented in the preliminary ICs since it originates from a low-resolution global
data source, such as GDAS. Therefore, HWRF employs a sophisticated algorithm to adjust
the vortex to match the observed storm intensity, location, and structure.

Initial conditions for HWRF d02 and d03 are created by ingesting GDAS fields onto the
HWRF vortex initialization procedure. To prepare the fields for input in the vortex initial-
ization, two 90-s atmosphere-only forecasts are conducted. These runs are referred to as
the WRF Analysis and WRF Ghost runs, and their configuration is detailed in Chapter 4.
Within the vortex relocation code, the fields are interpolated to the 3X domain, a temporary
domain with 0.02◦ grid spacing. For historical reasons, some file names and executables use
4X when referring to the 3X domain.

The HWRF vortex relocation process has three possible stages, which are determined based
on the intensity of the observed storm and on the availability of the 6-h forecast of the
previous HWRF run. Figure 5.1 describes Stages 1 and 2, and Figure 5.2 describes Stage 3.
If the previous cycle HWRF forecast exists, and if the observed storm intensity is at least
14 ms−1, HWRF is run in cycled mode. In cycled mode, the the 6-h forecast vortex from
the previous HWRF cycle, adjusted according to the TC Vitals, is used for initializing the

68

5. Vortex Relocation

current cycle. If those conditions are not met, the HWRF initialization is a "cold start".

For a cold start of storms with observed intensity less than 20 ms−1, the GDAS vortex is
adjusted and then used. Conversely, for storms with observed intensity greater than or equal
to 20 ms−1, a bogus vortex is used. A cycled run will go through all the three stages, while
a "cold start" run will go through Stages 2 and 3 only.

Stage 1: The previous cycle 6-h HWRF forecast is separated into environment fields and a
storm vortex. This step is run only for cycled cases.
Stage 2: The preliminary IC generated by real_nmm and the WRF ghost and analysis runs
is separated into environment fields and a storm vortex.
Stage 3: The storm vortex from the 6-h forecast from the previous cycle (for cycled runs),
from the GDAS, or from the bogus vortex is adjusted to match the observed location,
intensity, and structure provided by the NHC for the current time. Then the vortex and
environment fields are combined.

69

5. Vortex Relocation

diffwrf_3dvar.exe (3 times)
(convert previous HWRF wrfout d01, d02,

d03 files to binary)

hwrf_merge_nest_4x_step12_3n.exe
(merge wrfouts from d01, d02, and d03

onto 3X domain to produce data_4x_hwrf)

hwrf_create_trak_
guess.exe

(process previous
HWRF track)

hwrf_split1.exe
(separate data_4x into environment and

storm)

hwrf_pert_ct1.exe
(adjust the HWRF vortex)

diffwrf_3dvar.exe (5 times)
(wrfinput_d01, wrfinput_d02,

wrfinput_d03, wrfghost_d02, and
wrfghost_d03 to binary)

hwrf_create_nest_1x_10m.exe
(rebalance the inner nest domain data

and output new_data_d01)

hwrf_merge_nest_4x_step12_3n.exe
(info from d01, d02, and d03 onto 3X
domain to produce data_4x_gfs and

roughness2)

hwrf_create_trak_
fnl.exe

(process GFS
track)

hwrf_split1.exe
(separate data_4x into environment and

storm)

Stage I is used to split the previous HWRF
forecast into storm and environment so that the
vortex can be adjusted and relocated. This is
not done when the storm is very weak, as it is

best to use the GFS vortex in that case.

For obs intensity > 10, the information of
location of HWRF vortex comes from the last
cycle's combined domain. However, for obs

intensity <= 10, the last cycles' parent domain
track is used.

Stage II is used to split the global forecast to
get the environment

Stage 1 - Runs if previous HWRF
available and obs intensity >= 14 m/s

Stage 2 - Always runs

Figure 5.1: Simplified flow of Stages 1 and 2 of the vortex relocation process.

70

5. Vortex Relocation

diffwrf_3dvar.exe (3 times)
(convert previous HWRF wrfout d01, d02,

d03 files to binary)

hwrf_anl_4x_step2.exe
(adjust the storm vortex obtained in Stage 2
and add it to the environment flow; produce

new_data_4x)

hwrf_anl_cs_10m.exe
(only if hwrf_anl_4x_step2 produced flag_file)

(further adjust the vortex when vortex+env
flow is weaker than obs)

hwrf_anl_bogus_10m.exe
(only if hwrf_anl_4x_step produced flag_file2)

hwrf_pert_ct1.exe
(adjust the global vortex)

hwrf_inter_4to6.exe, hwrf_inter4to2.exe, and
hwrf_inter_2to2.exe

(interpolate to d01, d02, and d03,
respectively)

hwrf_anl_cs_10m.exe
(only if hwrf_anl_4x_step2 produced flag_file)

(further adjust the vortex when vortex+env
flow is weaker than obs)

hwrf_anl_bogus_10m.exe
(only if hwrf_anl_4x_step produced flag_file2)

hwrf_inter_4to6.exe, hwrf_inter4to2.exe, and
hwrf_inter_2to2.exe

(interpolate to d01, d02, and d03,
respectively)

hwrf_anl_4x_step2.exe
(adjust the storm vortex obtained in Stage 1
and add it to the environment flow; produce

new_data_4x)

Cold and observed intensity < 20 m/s
Cycled and observed intensity < 14 m/s

Cycled and observed intensity >= 14 m/s

Cold and observed intensity >= 20 m/s

hwrf_inter_4to6.exe, hwrf_inter4to2.exe, and
hwrf_inter_2to2.exe

(interpolate to d01, d02, and d03,
respectively)

diffwrf_3dvar.exe
(convert to NetCDF for wrfinput_d01,

wrfghost_d02, and wrfghost_d03)

hwrf_anl_bogus_10m.exe
Stage III

• For Cold starts, bogus strong storms
but use global vortex for weak ones

• For cycled starts, use HWRF vortex
for strong storms, but cycle global
vortex for weak ones.

• Special case I: if flag_file2
(RMW_obs/RMS_model > 16 or
beta < 0.7 and st_int < 64), abort
model vortex insertion and resort to
bogus

diffwrf_3dvar.exe
(convert to NetCDF for wrfinput_d01,

wrfghost_d02, and wrfghost_d03)

Stage 3

Figure 5.2: Simplified flow of Stage 3 of the vortex relocation process.

71

5. Vortex Relocation

5.2 Scripts

The vortex improvement procedure is entirely driven by the wrapper script relo-
cate_wrapper, which calls 4 instances of scripts/exhwrf_relocate.py. The first
instance runs relocate on the 90-s WRF Analysis run initialized from the GFS analysis. The
other three instances run relocate on the 90-s WRF Analysis runs created at each FGAT
time for the domains initialized by the GDAS forecasts. If the relocation procedure using
the GDAS-derived input files is successful, the relocate results from GFS-derived fields are
discarded.

5.2.1 Overview of exhwrf_relocate.py

The numbered items in the following list indicate calls made from the exh-
wrf_relocate.py script, while the lower level list items are calls made within the Python
modules.

1. Initialize the objects used to run all components of HWRF by calling
hwrf_expt.init_module().

2. If GFS: run relocate at analysis time
a) Stage 1
b) Stage 2
c) Stage 3

3. If GDAS: run relocate for each FGAT time
a) Stage 1
b) Stage 2
c) Stage 3

5.2.2 Overview of the Relocate Modules

Stage1

1. Copy the fixed files and input files to the working directory.
2. Check if the HWRF forecast from the previous cycle exists, and if the storm intensity

is greater than 14 ms−1; if not, continue to Stage 2.
3. Run diffwrf_3dvar.exe to convert the previous cycle forecast output

wrfout_d0[1-3] into unformatted data files old_hwrf_d0[1-3] respectively.
4. Run merge_nest_4x_step12_3n.exe to merge wrfout_d0[1-3] onto 3X domain

and produce a file containing the merged data: data_4x_hwrf.
5. Run hwrf_create_trak_guess.exe to produce a guess track (0,3,6,9 hour) for the

current forecast using previous cycle forecast track.
6. Run wrf_split1.exe to separate data_4x_hwrf into two parts, an environ-

ment field (wrf_env) and a storm vortex (storm_pert). A storm radius data file

72

5. Vortex Relocation

(storm_radius) is also generated.
7. Run hwrf_pert_ct1.exe to do adjustments to storm_pert. The new storm vortex

data (storm_pert_new) as well as two files containing the storm size information
(storm_size_p) and the symmetric part of the vortex (storm_sym) are generated.

Output files:

storm_size_p Storm size information
storm_pert_new New storm vortex after adjustments by hwrf_pert_ct1.exe
storm_sym Symmetric part of the vortex
storm_radius Storm radius information
wrf_env Environment field

Status Check:

If the line "CRITICAL: Stage 1 completed" is found in the standard output, Stage 1
was successful.

Executables

diffwrf_3dvar.exe

This executable serves two functions, denoted by 1 or 2 below.

FUNCTION 1. Converts netCDF input to unformatted file (when first argument is
"storm_relocate")
2. Updates existing netCDF file with new unformatted file (when first argu-
ment is "3dvar_update")

INPUT 1. netCDF format input files or previous cycle 6-h forecast
2. Unformatted file containing new vortex fields

OUTPUT 1. Unformatted data file
2. Updated netCDF file

USAGE 1. diffwrf_3dvar.exe storm_relocate input_file flnm3 \

output_file
The command above writes the WRF file input_file into an unformatted
file, output_file, which will be used in the vortex relocation procedures.
2. diffwrf_3dvar.exe 3dvar_update input_file output_file
The command above updates input_file with unformatted file out-
put_file, which contains new vortex fields.

hwrf_merge_nest_4x_step12_3n.exe

FUNCTION Merges inner and outer domains onto a 3X domain

73

5. Vortex Relocation

INPUT $gesfhr (=6) – last digit of the input/output fort file, i.e. fort.26
$st_int – the 68-69 characters in the tcvital.as)
$ibgs(=1) – argument indicating if a cold start (ibgs=1) or a cycled
run (ibgs=0)
tcvitals.as (fort.11) – observed storm center
old_hwrf_d01 or new_gfs_d01 (fort.26)
old_hwrf_d02 or new_gfs_d02 (fort.36)
old_hwrf_d03 or new_gfs_d03 (fort.46)

OUTPUT data_4x_hwrf (fort.56) – merged data from inner and outer do-
mains
roughness1 or roughness2 (fort.66) – sea-mask (1=sea, 0=land)
and ZNT (roughness length) merged onto the 3X domain.
30_degree_data (fort.61): partially merged data from inner and
outer domains (not used later)

USAGE echo $gesfhr $st_int $ibgs $BASIN | \
hwrf_merge_nest_4x_10m2.exe

hwrf_create_trak_guess.exe

FUNCTION Guesses storm center from previous 6-h forecast position

INPUT $storm_id – storm ID
$ih – model initial hour
tcvitals.as (fort.11) – observed storm center
hdas_atcfunix (fort.12) – track file from previous cycle 6-h fore-
cast.

OUTPUT trak.fnl.all (fort.30) – storm center guess (at 0, 3, 6, 9 h)

USAGE echo $storm_id $ih $BASIN | hwrf_create_trak_guess.exe

hwrf_split1.exe

FUNCTION Splits the vortex from the background (environmental) field

INPUT $gesfhr=6 – last digit of the input/output fort file, i.e. fort.26
$ibgs (=1)
$st_int – the 68-69 characters in the tcvital.as
tcvitals.as (fort.11) – storm center obs
data_4x_hwrf (fort.26) – merged data, on 3X domain, from inner
and outer domains
trak.fnl.all (fort.30) – storm center guess
old_hwrf_d01 (fort.46) – outer domain data

74

5. Vortex Relocation

OUTPUT wrf_env (fort.56) – environmental flow
storm_pert (fort.71) – separated 3D vortex field
storm_radius (fort.85) – average of model and observed storm ra-
dius
rel_inform.$cdate (fort.52) – diagnostics file (obs-previous 6-h
forecast)
vital_syn.$cdate (fort.55) – information for generating bogus if
storm not found in previous 6-h forecast

USAGE echo $gesfhr $ibgs $st_int $BASIN | hwrf_split.exe

hwrf_pert_ct1.exe

FUNCTION Adjusts storm vortex (storm_pert)

INPUT $gesfhr (=6) – last digit of the input/output fort file, i.e. fort.26
hdas_atcfunix (fort.12) – storm track
tcvitals.as (fort.11) – storm center obs
wrf_env (fort.26) – environmental flow (from hwrf_split1.exe)
storm_pert (fort.71) – separated 3D vortex field (from
hwrf_split1.exe)

OUTPUT storm_pert_new (fort.58) – adjusted storm perturbation
storm_size_p (fort.14) – storm size information
storm_sym (fort.23) – storm symmetry information

USAGE echo $gesfhr $BASIN | hwrf_pert_ct1.exe

Stage2

1. Copy the fix files and namelist.
2. Run diffwrf_3dvar.exe to convert wrfinput_d0[1-3] and wrfghost_d0[2-3]

to binary files new_gfs_d0[1-3] and new_ght_d0[2-3], respectively.
3. Run hwrf_create_nest_1x_10m.exe to rebalance the inner nest domain data.

This will generate the data file new_data_d01 that contains the rebalanced outer
and inner domain data.

4. Run hwrf_create_trak_fnl.exe to create trak.fnl.all_gfs, a guess track file
from atcfunix.

5. Run hwrf_merge_nest_4x_step12_3n.exe to merge all three HWRF domains
(new_gfs_d0[1-3]) onto the 3X domain. This will generate the file containing the
merged data on the 3X domain (data_4x_gfs) and a file containing sea mask and
roughness length data (roughness2).

6. Run hwrf_split1.exe to separate the data_4x_gfs into environment data
(gfs_env) and storm vortex (storm_pert_gfs). A file containing the storm radius
information will be generated, too (storm_radius_gfs).

75

5. Vortex Relocation

Status Check:

In the standard output file, the line "CRITICAL: Stage 2 completed" should exist.

Output files:

gfs_env environment fields from GFS data
roughness2 sea mask and roughness length from GFS data
storm_pert_gfs storm vortex from GFS data
storm_radius_gfs storm radius information from GFS data

Executables

diffwrf_3dvar.exe
Refer to Stage 1 in Section 5.2.2.

hwrf_create_nest_1x_10m.exe

FUNCTION Rebalances inner nest data

INPUT $gesfhr (=6) – last digit of the input/output fort file, i.e. fort.26
new_gfs_d02 (fort.46)
new_gfs_d01 (fort.26)

OUTPUT new_data_d01 (fort.57) – outer domain data interpolated to inner
domain

USAGE echo $gesfhr $BASIN | hwrf_create_nest_1x_10m.exe

hwrf_create_trak_fnl.exe
Refer to Stage 1 in Section 5.2.2.

hwrf_merge_nest_4x_step12_3n.exe
Refer to Stage 1 in Section 5.2.2.

hwrf_split1.exe
Refer to Stage 1 in Section 5.2.2.

Stage3

For a cold start or cycled start of a weak storm: The vortex and environment are obtained
from the global data.

1. Link the input and fixed files.
2. Run hwrf_pert_ct1.exe to adjust the global vortex (storm_pert_gfs from Stage

2).

76

5. Vortex Relocation

3. Run hwrf_anl_4x_step2.exe to adjust the storm vortex (storm_pert_gfs1) and
add the new storm vortex to the environment flow (gfs_env) on the 3X domain grid.
This will produce a new file (new_data_4x) containing the combined environment
flow and the adjusted storm vortex.

4. When the combined vortex and environment flow is weaker than observations, discard
the new file (new_data_4x), and run hwrf_anl_cs_10m.exe to further adjust the
analysis. This produces a new version of new_data_4x containing the combined
environment flow and adjusted vortex.

5. Run hwrf_inter_4to6.exe to interpolate the new_data_4x from the 3X domain
onto the 27-km HWRF grid. This will produce the new data_merge_d01. Input file
for storm radius is storm_radius_gfs.

6. Run hwrf_inter_4to2.exe to interpolate the new_data_4x from the 3X domain
onto the ghost_d03 grid. This will produce the new data_merge_g03.

7. Run hwrf_inter_2to2.exe to interpolate the new_data_4x from the 3X domain
onto the ghost_d02 grid. This will produce the new data_merge_g02.

8. Run diffwrf_3dvar.exe to convert the merged data files (data_merge_d01 and
data_merge_g0[2-3]) to NetCDF files (wrfinput_d01 and wrfghost_d0[2-3]).

For a cycled start of a strong storm: Performs all steps from cold/cycled weak storm except
for Step 2. For a strong cycled storm, hwrf_pert_ct1.exe runs in Stage 1 and the vortex
is taken from the previous HWRF forecast.

For a cold start of a strong storm: The vortex is an adjusted bogus vortex.

1. Link the input and fixed files.
2. Run hwrf_anl_bogus_10m.exe to create a bogus vortex and add it to the environ-

ment.
3. Perform Steps 5-8 of the weak storm procedure.

Status Check:

The line "CRITICAL: Stage 3 completed" exists in the standard output.

Executables

hwrf_pert_ct1.exe
Refer to Stage 1 in Section 5.2.2.

hwrf_anl_4x_step2.exe

FUNCTION Adjusts the storm vortex and adds the new storm vortex to the environ-
ment flow on the 3X domain grid

77

5. Vortex Relocation

INPUT $gesfhr (=6) – last digit of the input/output fort file, i.e. fort.26
storm_size_p (fort.14) – from hwrf_pert_ct1.exe
tcvitals.as (fort.11) – storm center obs
hdas_atcfunix (fort.12) – input track file from previous 6-h
forecast
storm_sym (fort.23) – symmetric part of storm
gfs_env (fort.26) – GFS environmental flow
roughness1 (fort.46) – roughness from
merge_nest_4x_step2.exe
storm_pert_new (fort.71) – adjusted storm perturbation from
hwrf_pert_ct1.exe

OUTPUT wrf_env_new (fort.36) – new environmental flow
new_data_4x (fort.56) – adjusted vortex + environment on 3X do-
main

USAGE echo $gesfhr $BASIN 0 1 | hwrf_anl_4x_step2.exe

hwrf_anl_cs_10m.exe

FUNCTION Further adjusts the storm vortex when combined vortex + environmental
flow is less than the observed maximum wind speed

INPUT $gesfhr (=6) – last digit of the input/output fort file, i.e. fort.26
tcvitals.as (fort.11) – observed storm center
wrf_env_new (fort.26) – new environmental flow (from
hwrf_anl_4x_step2.exe)
storm_sym (fort.23) – symmetric part of storm (from
hwrf_pert_ct1.exe)
roughness (fort.46) – roughness info for boundary layer calculation
(from hwrf_merge_nest_4x_step2.exe)
storm_radius (fort.85) – from wrf_split.exe
hwrf_storm_cyn_axisy_47 (fort.71,72,73,74,75,78) input
static vortex data
hwrf_storm_20 (fort.76, 77) – input static vortex data

OUTPUT new_data_4x (fort.56) – adjusted field on 3X domain when com-
bined vortex + environmental flow is less than the observed maximum
wind speed (replaces previous file)

USAGE echo $gesfhr $BASIN | hwrf_anl_cs_10m.exe

78

5. Vortex Relocation

hwrf_inter_4to6.exe

FUNCTION Interpolates from 3X domain onto outer domain

INPUT $gesfhr (=6) – last digit of the input/output fort file, i.e. fort.26
tcvitals.as (fort.11) – observed storm center
new_gfs_d01 (fort.26) – outer domain adjusted GFS data
new_data_4x (fort.36) – adjusted storm
new_gfs_d01 (fort.46) – outer domain adjusted GFS data
storm_radius (fort.85)

OUTPUT data_merge_d01 (fort.56) – merged data on outer domain

USAGE echo $gesfhr $BASIN | hwrf_inter_4to6.exe

hwrf_inter_4to2.exe

FUNCTION Interpolates from 3X domain to ghost_d03

INPUT $gesfhr (=6) – last digit of the input/output fort file, i.e. fort.26
tcvitals.as (fort.11) – observed storm center
new_data_4x (fort.26) – adjusted vortex + environment
new_ght_d03 (fort.36) – input ghost file in binary format

OUTPUT data_merge_g03 (fort.56) – merged data on outer domain

USAGE echo $gesfhr $BASIN | hwrf_inter_4to2.exe

hwrf_inter_2to2.exe

FUNCTION Interpolates from 3X domain to ghost_d02

INPUT $gesfhr (=6) – last digit of the input/output fort file, i.e. fort.26
tcvitals.as (fort.11) – observed storm center
new_data_4x (fort.26) – adjusted vortex + environment
new_ght_d02 (fort.36) – input ghost file in binary format
new_gfs_d01 (fort.46) – outer domain adjusted GFS data

OUTPUT data_merge_g02 (fort.56) – merged data on outer domain

USAGE echo $gesfhr $BASIN | hwrf_inter_2to2.exe

79

5. Vortex Relocation

diffwrf_3dvar.exe
Refer to Stage 1 in Section 5.2.2.

hwrf_anl_bogus_10m.exe

FUNCTION Creates a bogus storm and adds it to the environmental flow

INPUT $gesfhr (=6) – last digit of the input/output fort file, i.e. fort.26
tcvitals.as (fort.11) – observed storm center
gfs_env (fort.26) – GFS environmental flow
data_4x_gfs (fort.36) – merged GFS inner/outer domain data
roughness2 (fort.46) – roughness info for boundary layer calcula-
tion
storm_pert_gfs (fort.61) – separated GFS 3D vortex field
storm_radius_gfs (fort.85)
hwrf_storm_cyn_axisy_47 (fort.71,72,73,74,75,78) input
static vortex data
hwrf_storm_20 (fort.76, 77) input static vortex data

OUTPUT new_data_4x: combined environment flow and bogus field on the 3X
domain

USAGE echo $gesfhr $BASIN | hwrf_anl_bogus_10m.exe

80

6
Data Assimilation

6.1 Introduction

The preliminary initial conditions created by downscaling the global model data and per-
forming the vortex relocation procedures are further modified with data assimilation using
GSI on the 9- and 3-km WRF Ghost domains. No data assimilation is done in the 27-km
parent domain. The term HDAS refers to the process of running GSI for data assimilation
in HWRF.

The data assimilation in HWRF is performed using the hybrid ensemble-variational method.
This indicates that the background error covariance information is a combination of two
sources, a static, pre-generated matrix for the global model, and a flow-dependent matrix
derived from the GFS ensemble 6-h forecasts. Because HWRF uses the GFS ensemble, but
does not feedback into it, this procedure is termed "one-way hybrid". For more information
on the ensemble-variational method, refer to the HWRF v3.6a Scientific Documentation
available from the DTC website (www.dtcenter.org/HurrWRF/users).

The datasets assimilated in operations in the 9-km (d02) and 3-km (d03) domains are de-
scribed in the HWRF Scientific Documentation. HWRF has the capability of assimilating
tropical cyclone inner-core data such as the NOAA’s P3 Tail Doppler Radar (TDR) ob-
servation. To collect inner-core observations, an aircraft has to penetrate the target TC
multiple times to finish one mission, which may take several hours; therefore the observa-
tions in one TDR data set are collected at different times. In order for GSI to calculate
the innovation, defined as the difference between the first guess and the analysis, it needs
to have the first guess and the observations valid at the same time. To accomplish this
for observations that span a range of times, the First Guess at Appropriate Time (FGAT)
procedure is used. In FGAT, first-guess fields valid at various times are supplied to GSI,

81

www.dtcenter.org/HurrWRF/users

6. Data Assimilation

which then interpolates the data to the time in which each observation was taken. For
HWRF, first-guess fields are created at three time levels: 3 h before the HWRF initial time
(Figure 4.2); at the HWRF initial time (Figure 4.3); and 3 h after the HWRF initial time
(Figure 4.4). In order to create the three first-guesses, the real_nmm, short WRF forecasts,
and vortex adjustment procedures are performed three times. This produces the three ghost
d03 and three ghost d02 output files that are used by GSI in its FGAT operation (Figure
6.1) After the data is assimilated in the ghost d02 and ghost d03 domains, the prelimi-
nary analysis for the parent domain, the middle and inner domain output from the WRF
Analysis, and the ghost d02 and ghost d03 GSI analysis (which used FGAT) are merged
to produce the final atmospheric IC for the 5-day forecast. In order to perform the data
assimilation in the ghost domain, users should run GSI and then merge. For more de-
tails about GSI, please consult the GSI Users’ Guide available from the DTC at http:
//www.dtcenter.org/com-GSI/users/docs/users_guide/GSIUserGuide_v3.3.pdf.

GSI d02

gsi_out_storm1ghost_parent

merge

wrfinput_d01 wrfanl_d03wrfanl_d02

WRF

GSI d03

gsi_out_storm1ghost

wrfghost_d02
analysis time

wrfghost_d02
- 3h

wrfghost_d02
+ 3h

wrfanl_d03wrfanl_d02

wrfbdy_d01

wrfghost_d03
analysis time

wrfghost_d03
- 3h

wrfghost_d03
+ 3h

wrfinput_d01

Figure 6.1: Simplified GSI and Merge procedures. Purple outlined boxes correspond to the
purple outlined boxes of the figures in Section 4.2. Blue boxes are netCDF files.

6.2 Scripts

The HWRF data assimilation component is run using two wrapper scripts,
gsi_d02_wrapper and gsi_d03_wrapper. These wrappers are responsible for calling
their respective instances of scripts/exhwrf_gsi.py.

6.2.1 Overview of exhwrf_gsi.py

1. Initialize the objects used to run all components of HWRF by calling
hwrf_expt.init_module().

2. Run GSI for the appropriate domain.

82

http://www.dtcenter.org/com-GSI/users/docs/users_guide/GSIUserGuide_v3.3.pdf
http://www.dtcenter.org/com-GSI/users/docs/users_guide/GSIUserGuide_v3.3.pdf

6. Data Assimilation

6.2.2 Overview of the GSI Module

The run module for GSI (an FGATGSI class object) is located in ush/hwrf/gsi.py, and is
responsible for the following tasks.

1. Link the fixed files
2. Link the GFS ensemble files
3. Link the observation files
4. Link the bias correction files
5. Create a namelist for the GSI analysis
6. Copy the background file (wrfinout) from the corresponding WRF Ghost run
7. Run gsi.exe

Output files:

stdout The standard text output file. It is the file most often used to check
the GSI analysis processes as it contains basic and important information
about the analyses.

wrf_inout Analysis results; format is same as the input background file

Status Check:

In the standard output file, you will find the line "CRITICAL: GSI succeeded" followed
by the domain for which the assimilation was run.

Executables:

gsi.exe

FUNCTION Performs the GSI 3D-VAR data assimilation analysis

INPUT gsiparm.anl – GSI namelist, created by the script by modifying tem-
plate /parm/hwrf_gsi.nml
filelist – ASCII file with 80 lines, each one containing a file name for
a GFS ensemble member (used for ensemble-based background covari-
ance)
satbias_angle – file containing information on satellite angle, from
dataset directory
satbias_in – file containing information on satellite bias, from dataset
directory
wrf_inout – background file, copied from WRF Ghost output
Various observations in BUFR and prepBUFR format

OUTPUT wrf_inout – analysis results if GSI completes successfully. The format
is the same as the background file.

USAGE gsi.exe < gsiparm.anl

83

7
Merge

7.1 Introduction

Once the HWRF atmospheric initialization has been completed with the use of the vortex
relocation and data assimilation, the adjusted ICs on all grids must be merged to provide the
final ICs for the HWRF 5-day forecast. The origin of the files going into the merge procedure
is shown in Figure 6.1, and is run by the wrapper script merge_wrapper. A description of
the domains used in HWRF is included in Section 4.1.

7.2 Scripts

Merge is run by submitting the merge_wrapper, which sets necessary environment vari-
ables before running Python script exhwrf_merge.py.

7.2.1 Overview of exhwrf_merge.py

1. Initialize the objects used to run all components of HWRF by calling
hwrf_expt.init_module().

2. Run the gdas_merge Python module.

84

7. Merge

7.2.2 Overview of Merge Module

Merge is a RelocationTask object whose run module lives in ush/hwrf/relocate.py and
is responsible for the following tasks.

1. Copy the input files.
2. Check to see whether storm_radius file exists from relocate process and contains

information.
3. Run diffwrf_3dvar.exe to convert the netCDF format wrfinput_d0[1-3] and

wrfghost_d0[2-3] to unformatted data files new_hdas_d01, new_gfs_d0[2-
3], and new_ght_d0[2-3].

4. Run hwrf_inter_2to1.exe to interpolate the data in file new_ght_d03 and
new_gfs_d03 to the inner nest domain grid. This will produce the merged data
on the inner nest grid (data_merge_d03).

5. Run hwrf_inter_2to1.exe to interpolate the data in file new_ght_d02 and
new_gfs_d02 to the inner nest domain grid. This will produce the merged data
on the inner nest grid (data_merge_d02).

6. Run hwrf_inter_2to6.exe to interpolate the files new_hdas_d01,
new_gfs_d02, and new_ght_d02 to the outer domain grid. This will produce
the merged data on the outer domain grid (data_merge_d01).

7. Run diffwrf_3dvar.exe to convert the unformated files data_merge_d0[1-3] to
the netCDF format files wrfinput_d0[1-3].

8. Deliver the products.

Output files:
wrfinput_d01 IC for the outer domain containing the new vortex
wrfinput_d02 IC for the middle nest domain containing the new vortex
wrfinput_d03 IC for the inner nest domain containing the new vortex

Status Check:

Check that output files exist in the com/ directory for the current cycle. The line "CRIT-
ICAL: Merge running in directory:" will also appear near the end of the standard
output file.

Executables:

diffwrf_3dvar.exe
Refer to Stage 1 in Section 5.2.2.

85

7. Merge

hwrf_inter_2to1.exe

FUNCTION Interpolates from ghost domains to nest domains (DOMAIN is "02" or "03")

INPUT $gesfhr (=6) – last digit of the input/output fort file, i.e. fort.26
new_ght_d{DOMAIN} (fort.26) – data on ghost domain
new_gfs_d{DOMAIN} (fort.36) – data on inner nest domain

OUTPUT data_merge_d{DOMAIN} (fort.56) – interpolated data on inner do-
main

USAGE echo $gesfhr $BASIN | hwrf_inter_2to1.exe

hwrf_inter_2to6.exe

FUNCTION Interpolates data from ghost domain to outer domain.

INPUT $gesfhr (=6) – last digit of the input/output fort file, i.e. fort.26
new_gfs_d02 (fort.26) – data on HWRF middle nest grid
new_ght_d02 (fort.36) – data on ghost d03 grid
new_hdas_d01 (fort.46) – data on outer domain grid
storm_radius (fort.85) – storm radius obtained from wrf_split1.exe
in either Stage 1 (cycled run) or Stage 2 (cold start)

OUTPUT data_merge_d01 (fort.56) – interpolated data on outer domain

USAGE echo $gesfhr $BASIN | hwrf_inter_2to6.exe

86

8
Ocean Initialization for

MPIPOM-TC

8.1 Introduction

This chapter explains how to run the initialization of the MPIPOM-TC component of the
HWRF model, available from the DTC. Users are also encouraged to read the HWRF v3.6a
Scientific Documentation.

8.2 Scripts

The initialization of the HWRF ocean model, MPIPOM-TC, is accomplished by running the
init_ocean_wrapper, which is responsible for linking the ocean executables to the exec/
directory and running exhwrf_ocean_init.py to generate updated initial conditions for
the ocean forecast component of HWRF.

8.2.1 Overview of exhwrf_ocean_init.py

1. Initialize the objects used to run all components of HWRF by calling
hwrf_expt.init_module().

87

8. Ocean Initialization for MPIPOM-TC

2. Run pominit. If successful, write a status file to indicate that the forecast will be
coupled, otherwise indicate that the forecast will be uncoupled.

8.2.2 Overview of Ocean Init Modules

1. Determine the region for which the ocean model will be run. Currently supported
options are the transatlantic domain for storms in the North Atlantic Ocean (L) and
the East Pacific domain for storms in the Eastern North Pacific Ocean (E). Ocean
coupling is not currently supported in other ocean basins, although options exist for
MPIPOM-TC coupling worldwide.

2. Determine the ocean initial condition module to be used. Currently supported op-
tions, which are consistent with the 2014 operational configuration of HWRF, include
the Generalized Digital Environmental Model (GDEM) temperature and salinity clima-
tology with feature-based modifications for the transatlantic domain and unmodified
GDEMv3 climatology for the East Pacific domain.

3. Link the input and fix files.
4. Run gfdl_getsst.exe to obtain the sea surface temperature and land/sea mask

from the GFS analysis.
5. Run gfdl_sharp_mcs_rf_l2m_rmy5.exe (in transatlantic domain only) to assimi-

late ocean features, including major fronts and eddies, and sharpen the frontal gradi-
ents.

6. Run transatl06prep.xc (in transatlantic domain only) to blend the sharpened
GDEM and the unsharpened GDEM along 50 W longitude.

7. Prepare ocean initial conditions for MPIPOM-TC Phase 1. By default, pom-
prep_fbtr.xc is used for the transatlantic domain, and pomprep_gdm3.xc is used
for the East Pacific domain. Also, by default, both executables are set to assimilate the
GFS SST analysis into the upper ocean mixed layer, creating an ocean initial condi-
tion at the sea surface that is identical to the atmospheric initial condition at the sea
surface.

8. Run hwrf_ocean_init.exe for Phase 1 to spin up the ocean currents. The SST is
held constant during Phase 1. Historically, Phase 1 has also been known as Phase 3, so
the terms Phase 1 and Phase 3 are sometimes used interchangeably.

9. Run hwrf_ocean_init.exe for Phase 2 to generate the cold wake at the sea surface
prior to the start of the coupled model forecast. Historically, Phase 2 has also been
known as Phase 4, so the terms Phase 2 and Phase 4 are sometimes used interchange-
ably.

Executables

gfdl_getsst.exe

FUNCTION Extract SST, land/sea mask, and lon/lat data from the GFS spectral files.

INPUT for11 (gfs.YYYYMMDDHH.tHHz.sfcanl)
fort.11 (gfs.YYYYMMDDHH.tHHz.sfcanl)
fort.12 (gfs.YYYYMMDDHH.tHHz.sanl)

88

8. Ocean Initialization for MPIPOM-TC

OUTPUT fort.23 (lonlat.gfs)
fort.74 (sst.gfs.dat)
fort.77 (mask.gfs.dat)
getsst.out

USAGE gfdl_getsst.exe > getsst.out

gfdl_sharp_mcs_rf_l2m_rmy5.exe

FUNCTION Run the feature-based sharpening program, which takes the GDEM T/S
climatology, horizontally interpolates it onto the old POM-TC grid for
the United domain, and employs the diagnostic, feature-based modeling
procedure, as described in the HWRF Scientific Documentation. This
executable is called for the transatlantic domain only.

INPUT input_sharp
fort.66 (gfdl_ocean_topo_and_mask.REGION)
fort.8 (gfdl_gdem.MM.ascii)
fort.90 (gfdl_gdem.MM±1.ascii)
fort.24 (gfdl_ocean_readu.dat.MM)
fort.82 (gfdl_ocean_spinup_gdem3.dat.MM)
fort.50 (gfdl_ocean_spinup_gspath.MM)
fort.55 (gfdl_ocean_spinup.BAYuf)
fort.65 (gfdl_ocean_spinup.FSgsuf)
fort.75 (gfdl_ocean_spinup.SGYREuf)
fort.91 (mmdd.dat)
fort.31 (hwrf_gfdl_loop_current_rmy5.dat.YYYYMMDD)
fort.32 (hwrf_gfdl_loop_current_wc_ring_rmy5.dat.YYYYMMDD)

OUTPUT fort.13 (gfdl_initdata.united.MM)
sharp_mcs_r_l2b.out

USAGE gfdl_sharp_mcs_rf_l2m_rmy5.exe < input_sharp > \
sharp_mcs_r_l2b.out

transatl06prep.xc

FUNCTION Blend T/S between sharpened GDEM and unsharpened GDEM along
50W. This executable is called for the transatlantic domain only.

INPUT fort.8 (gfdl_gdem.MM.ascii)
fort.90 (gfdl_gdem.MM±1.ascii)
fort.91 (mmdd.dat)
fort.13 (gfdl_initdata.united.MM)

89

8. Ocean Initialization for MPIPOM-TC

OUTPUT fort.113 (gfdl_initdata.REGION.MM)
transatl06prep.out

USAGE transatl06prep.xc > transatl06prep.out

pomprep_fbtr.xc

FUNCTION Read sharpened and blended GDEM climatology, horizontally interpolate
it onto the high resolution MPIPOM-TC grid, incorporate the bathymetry
and a land/sea mask, assimilate the GFS SST, and prepare the ICs for
MPIPOM-TC. This executable is called for the transatlantic domain only.

INPUT input
fort.13 (gfdl_initdata.transatl.MM)
fort.66 (gfdl_ocean_topo_and_mask.REGION.lores)
fort.21 (sst.gfs.dat)
fort.22 (mask.gfs.dat)
fort.23 (lonlat.gfs)

OUTPUT STORM.el_initial.nc
STORM.grid.nc
STORM.ts_clim.nc
STORM.ts_initial.nc
STORM.uv_initial.nc
ocean_pomprep.out

USAGE pomprep_fbtr.xc < input > ocean_pomprep.out

pomprep_gdm3.xc

FUNCTION Read GDEMv3 climatology, horizontally interpolate it onto the high res-
olution MPIPOM-TC grid, incorporate the bathymetry and a land/sea
mask, assimilate the GFS SST, and prepare the ICs for MPIPOM-TC. This
executable is currently supported for the East Pacific domain only, but it
can be used worldwide.

INPUT input
tin.nc (tgdemv3sMM.nc)
sin.nc (sgdemv3sMM.nc)
fort.66 (gfdl_ocean_topo_and_mask.REGION.lores)
fort.21 (sst.gfs.dat)
fort.22 (mask.gfs.dat)
fort.23 (lonlat.gfs)

90

8. Ocean Initialization for MPIPOM-TC

OUTPUT STORM.el_initial.nc
STORM.grid.nc
STORM.ts_clim.nc
STORM.ts_initial.nc
STORM.uv_initial.nc
ocean_pomprep.out

USAGE pomprep_gdm3.xc < input > ocean_pomprep.out

hwrf_ocean_init.exe

FUNCTION Run MPIPOM-TC ocean Phase 1 or Phase 2 (also known historically as
ocean Phase 3 and Phase 4, respectively, as in the model code).

INPUT For Phase 1
pom.nml
STORM.el_initial.nc
STORM.grid.nc
STORM.ts_clim.nc
STORM.ts_initial.nc
STORM.uv_initial.nc
For Phase 2
pom.nml
STORM.el_initial.nc
STORM.grid.nc
STORM.ts_clim.nc
STORM.ts_initial.nc
STORM.uv_initial.nc
restart.phase1.nc

OUTPUT For Phase 1
restart.phase1.nc
STORM.0000.nc
STORM.0001.nc
STORM.0002.nc
For Phase 2
restart.phase2.nc
STORM.0000.nc
STORM.0001.nc
STORM.0002.nc
STORM.0003.nc

USAGE hwrf_ocean_init.exe > ocean_init.out

91

9
Forecast Model

9.1 Introduction

The operational HWRF, which runs in the North Atlantic and Eastern North Pacific basins,
is an atmosphere-ocean coupled forecast system, which includes an atmospheric compo-
nent (WRF-NMM), an ocean component (MPIPOM-TC), and the NCEP Coupler. Therefore,
HWRF is a Multiple Program Multiple Data (MPMD) system which consists of three exe-
cutables, WRF, MPIPOM-TC, and Coupler. After the ocean and atmosphere initializations
are successfully completed, the coupled HWRF system run can be submitted. In the non-
operational basins, Central Pacific, West Pacific, and Indian Ocean, HWRF can only be run
in atmosphere standalone mode, that is, uncoupled.

9.2 Scripts

The wrapper script forecast_wrapper is responsible for calling the Python script exh-
wrf_forecast.py in the scripts/ directory. The wrapper script sets the number of tasks
for the parallel forecast job. In operations, 210 tasks are used: 200 for the WRF forecast, 9
for the MPIPOM-TC, and 1 for the NCEP Coupler. While this configuration is recommended,
you may change the total number of tasks to reflect the following relationship,

TOTAL_TASKS = np+ 9 + 1, (9.1)

where np is an integer multiple of 4. The number of processors used should match TO-

92

9. Forecast Model

TAL_TASKS.

For uncoupled runs, you should change the variable TOTAL_TASKS in forecast_wrapper
to reflect the reduction of tasks (i.e., subtract 10 for the MPIPOM-TC and Coupler). In this
case, you should also change the MODEL variable to "UNCOUPLED" so that the Python script
will run only wrf.exe.

9.2.1 Overview of exhwrf_forecast.py

1. Initialize all of the objects used to run HWRF
2. Run the HWRF main forecast, coupled or uncoupled (runwrf.run)

9.2.2 Overview of the Forecast Module

For coupled forecasts, runwrf is an object of the WRFCoupledPOM subclass of fcst-
task.WRFAtmos. The run module is responsible for the following tasks.

1. Link the input files required by WRF (fix files, initial and boundary condition files, and
geographical data files).

2. Make the Coupler namelist.
3. Make the POM namelist.
4. Copy POM inputs.
5. Run hwrf_swcorner_dynamic.exe to calculate the location of the middle nest.
6. Make the WRF namelist.
7. Submit the MPI forecast run (three executables: wrf.exe, hwrf_ocean_fcst.exe,

hwrf_wm3c.exe).

Output files:

Several types of primary output files containing most variables, output every hour for the
first nine hours, then every three hours.

wrfout_d01_yyyy-mm-dd_hh:mm:ss
wrfout_d02_yyyy-mm-dd_hh:mm:ss
wrfout_d03_yyyy-mm-dd_hh:mm:ss

Auxiliary output files containing accumulated precipitation and 10-m winds, with hourly
output in a single file for each domain.

wrfdiag_d01
wrfdiag_d02
wrfdiag_d03

93

9. Forecast Model

Text file with time series of storm properties.

hifreq_d03.htcf

File hifreq_d03.htcf has nine columns containing the following items.

1. Forecast lead time (s)
2. Minimum Sea Level Pressure (MSLP) in the inner nest (hPa)
3. Latitude of grid point with minimum sea level pressure
4. Longitude of grid point with minimum sea level pressure
5. Maximum wind in the inner nest at the lowest model level (kt)
6. Latitude of grid point with the maximum wind
7. Longitude of grid point with the maximum wind
8. Latitude of the location of the center of the inner nest
9. Longitude of the location of the center of the inner nest

The ocean model will produce diagnostic output files with the following naming convention.

STORMNAME.00NN.nc Ocean forecast output numbered consecutively with inte-
gers (frequency depends on namelist variables) in netCDF
format

flux.00DD Forecast ocean flux for each day
sst.00DD Forecast sea surface temperature for each day

Status Check:

To check whether the run was successful, look for "SUCCESS COMPLETE" at the end
of the log file (e.g., rsl.out.0000). This check is also done in the code, and
can be found in the standard output file.

Executables

hwrf_swcorner_dynamic.exe
Refer to Section 4.2.3.

wrf.exe

FUNCTION Atmospheric component of HWRF

94

9. Forecast Model

INPUT geo_nmm.d01.nc – Geogrid static files for d01
geo_nmm_nest.l01.nc – Geogrid static files for d02
geo_nmm_nest.l02.nc – Geogrid static files for d03
wrfbdy_d01 – LBCs for d01
wrfinput_d01 – ICs for d01
wrfanl_d02_YYYY-MM-DD_HH:00:00 – ICs for d02
wrfanl_d03_YYYY-MM-DD_HH:00:00 – ICs for d03
gwd_surface – Gravity wave drag file
namelist.input – Example in Appendix B
fort.65
WRF Fix files (Refer to Section 4.2.3)

OUTPUT wrfout_d01_YYYY-MM-DD_HH:00:00
wrfout_d02_YYYY-MM-DD_HH:00:00
wrfout_d03_YYYY-MM-DD_HH:00:00
wrfdiag_d01
wrfdiag_d02
wrfdiag_d03
hifreq_d03.htcf

USAGE For a coupled HWRF forecast, wrf.exe must be submitted with the cou-
pler and the ocean model. Refer to MPI Explanation below.
For an uncoupled run, you only need to issue the executable.
wrf.exe

hwrf_ocean_fcst.exe

FUNCTION MPIPOM-TC ocean model for HWRF

INPUT STORM.el_initial.nc
STORM.grid.nc
STORM.ts_clim.nc
STORM.ts_initial.nc
STORM.uv_initial.nc
restart.phase2.nc

OUTPUT STORM.0000.nc
STORM.0001.nc
STORM.0002.nc
STORM.0003.nc
STORM.0004.nc
STORM.0005.nc

USAGE For a coupled HWRF forecast, the ocean model hwrf_ocean_fcst.exe
must be submitted to the computers with the atmosphere model wrf.exe
and the coupler hwrf_wm3c.exe. Refer to the MPI Explanation below.

95

9. Forecast Model

hwrf_wm3c.exe

FUNCTION Coupler that links the atmospheric component and oceanic component

INPUT cpl.nml – coupler namelist

OUTPUT None

USAGE Refer to the MPI Explanation below

Explanation of the MPI command for the forecast model

As mentioned in Section 6.1, HWRF can be run as either a coupled or uncoupled model
of the atmosphere and ocean. The operational HWRF runs coupled in the North Atlantic
and Eastern North Pacific basins. The scripting system submits coupled runs in the North
Atlantic and Eastern North Pacific basins when run_ocean=yes in hwrf_basic.conf,
and uncoupled runs in other basins (run_ocean=no). If an uncoupled run is desired, file
parm/hwrf_basic.conf needs to be manually altered as described in Sections 3.2.2 and
3.6.2.

• Coupled
With LSF, using the command mpirun.lsf

mpirun.lsf -cmdfile cmdfile
where cmdfile is a file containing the list of executables. For example,
the cmdfile file below indicates that the coupled run will be submitted to
210 processors, one for the coupler (hwrf_wm3c.exe), nine for the ocean
domain (hwrf_ocean_fcst.exe) and 200 for wrf.exe.
hwrf_wm3c.exe
hwrf_ocean_fcst.exe
wrf.exe
wrf.exe
wrf.exe
wrf.exe...

With MOAB/Torque, using the command mpiexec
mpiexec -np 1 ./hwrf_wm3c.exe : -np 9 \
./hwrf_ocean_fcst.exe : -np 200 ./wrf.exe
For example, the previous command will run the coupled model using 210
processors, one for the coupler (hwrf_wm3c.exe), nine for the ocean do-
main (hwrf_ocean_fcst.exe), and 200 for wrf.exe

• Uncoupled
– With LSF, using the command mpirun.lsf

mpirun.lsf -procs 200 ${WRF_ROOT}/main/wrf.exe
– With MOAB/Torque, using the command mpiexec

mpiexec -np 200 ${WRF_ROOT}/main/wrf.exe

96

10
HWRF Post Processor

10.1 Introduction

The NCEP UPP is used to de-stagger the HWRF parent and nest domain output, compute
diagnostic variables, and interpolate the output from the native WRF grids to NWS standard
levels (pressure, height etc.) and standard output grids (latitude/longitude, Lambert Confor-
mal, polar-stereographic, Advanced Weather Interactive Processing System grids, etc.). The
UPP outputs files in GRIB1 format. This package also merges the parent and nest domains
forecasts onto one combined domain grid. Information on how to acquire and build the UPP
code is available in Section 2.

There are two main executables in UPP, unipost.exe and copygb.exe. This chapter
covers only the module that calls unipost.exe. The use of copygb.exe is covered in
Chapter 11.

10.2 Scripts

The postprocessing using UPP is run using two wrappers, unpost_wrapper and
post_wrapper. These wrappers call the exhwrf_unpost.py and exhwrf_post.py, re-
spectively.

97

10. HWRF Post Processor

10.2.1 Overview of exhwrf_unpost.py

The purpose of this script is to delete output from any previous run of the same cycle.

1. Initialize the objects used to run all components of HWRF by calling
hwrf_expt.init_module().

2. Run the unrun modules for the following tasks.
• runwrf
• wrfcopier
• satpost
• nonsatpost
• gribber

10.2.2 Overview of exhwrf_post.py

The Python script contains a loop that continually checks the status of the forecast and
post-processes any output files that are available. As long as there are tasks remaining, it
runs copies of wrfcopier, nonsatpost, and satpost. Note that satpost refers to the
postprocessing to produce synthetic satellite brightness temperatures, while nonsatpost
refer to postprocessing to produce all other variables (temperature, winds etc.)

10.2.3 Overview of UPP Python Modules

Wrfcopier

Wrfcopier is a WRFCopyTask class object that lives in ush/hwrf/copywrf.py. It serves
the primary purpose of delivering files from the WRF run directory to the com/ directory.

Nonsatpost and Satpost

Nonsatpost and satpost are PostManyWRF class objects that run the UPP on the WRF
output files. They are used to produce general forecast products and synthetic satellite
images, respectively. The run module for these tasks performs the following duties.

1. Link the input file (wrfout forecast or analysis file)
2. Make a control file that corresponds to the input file
3. Write itag file which contains the following four lines to be read by unipost.exe.

• Name of the WRF output file to be post processed
• Format of the WRF output (NetCDF or binary; choose NetCDF for HWRF)
• Forecast valid time (not model start time) in WRF format
• Model name (NMM or NCAR; choose NMM for HWRF)

98

10. HWRF Post Processor

4. Run unipost.exe

Output files:

In the intercom/ directory, there are directories for each forecast hour containing the
satpost and nonsatpost output. The following list describes the naming convention for these
directories and files. The forecast hour, hh, by default is hourly for the first 9 hours, and 3
hourly after that.

satpost-fhh00m/
satpost-fhhh00m-moad.egrb
satpost-fhhh00m-storm1inner.egrb
satpost-fhhh00m-storm1outer.egrb

nonsatpost-fhh00m/
nonsatpost-fhhh00m-moad.egrb
nonsatpost-fhhh00m-storm1inner.egrb
nonsatpost-fhhh00m-storm1outer.egrb

Status check:

The string "INFO: completed post" will appear in the standard output file.

Executables:

unipost.exe

FUNCTION De-staggers the HWRF native output, interpolates it vertically to pressure
levels, computes derived variables, and outputs in GRIB format.

INPUT hwrf_eta_micro_lookup.dat
wrfout_d01, wrfout_d02 or wrfout_d03 – HWRF native output
itag – namelist
unipost control file:

for satpost: hwrf_cntrl.sat; and,
for nonsatpost: hwrf_cntrl.nonsat${BASIN}, where BASIN can
be L, E, C, or W for N. Atlantic, E. N. Pacific, Central N. Pacific, or
W. N. Pacific, respectively.

OUTPUT HWRF postprocessed output in GRIB format

USAGE unipost.exe < itag

99

11
Forecast Products

11.1 Introduction

HWRF v3.6a will produce two types of forecast products, processed GRIB files (projected
to lat-lon grids) and track files containing information about the tropical cyclone. The
processed GRIB files are produced on several different grids outlined in Figure 11.1 for the
general atmospheric fields and Figure 11.2 for satellite-derived products. Those GRIB files
are used as input to the GFDL Vortex Tracker. They can also be used to create images with
visualization packages such as GrADS, NCL, etc. Image generation is not covered in this
Users’ Guide.

The GFDL Vortex Tracker is a program that ingests model forecasts in GRIB format, ob-
jectively analyzes the data to provide an estimate of the vortex center position (latitude and
longitude), and tracks the storm for the duration of the forecast. Additionally, it reports
metrics of the forecast storm, such as intensity (maximum 10-m winds and MSLP) and struc-
ture (wind radii for 34-, 50-, and 64-knot thresholds in each quadrant of the storm) at each
output time. The GFDL Vortex Tracker requires the forecast grids to be on a cylindrical
equidistant, latitude-longitude (lat/lon) grid. For HWRF, UPP is used to process the raw
model output and create the GRIB files for the tracker.

The vortex tracker creates two output files containing the vortex position, intensity, and
structure information: one in Automated Tropical Cyclone Forecast (ATCF) format; and
another in a modified ATCF format.

The GFDL Vortex Tracker locates the hurricane vortex center positions by searching for the
average of the maximum or minimum of several parameters in the vicinity of an input first-
guess position of the targeted vortex. The primary tracking parameters are relative vorticity

100

11. Forecast Products

wrfprs_d01
27 km

80º x 80º

wrfprs_d03
3 km

7.2º x 6.5º

wrfprs_d02
9 km

11º x 10º

hwrfprs_i
0.1º

12º x 14º

hwrfprs_n
0.03º

7.5º x 9º

hwrfprs_p
0.25º

90º x 110º

hwrfprs_m
0.03º

12º x 15º

hwrfprs_c
0.1º

90º x 110º

hwrftrk
0.03º

17º x 23º

parenthigh
0.1º

90º x 110º

Native WRF Grid

Output Grid

Legend

Figure 11.1: Naming convention, resolution, and size for the output grids that contain con-
ventional atmospheric data. Blue boxes indicate the grids from the wrfout files.
Green boxes are the grids in the final GRIB files.

at 850 hPa and 700 hPa, MSLP, and geopotential height at 850 and 700 hPa. Secondarily,
wind speed at 10 m, 850 hPa, and 700 hPa are used. Winds at 500 hPa are used, together
with other parameters, for advecting the storm and creating a first guess position for all
times beyond initialization. Many parameters are used in order to provide more accurate
position estimates for weaker storms, which often have poorly defined structures/centers.

Besides the forecast file in GRIB format, the vortex tracker also ingests a GRIB index file,
which is generated by running the program grbindex. The utility wgrib is also used for
preparing data for the tracker. Both grbindex and wgrib were developed by NCEP and are
distributed by the DTC as part of the HWRF Utilities.

This version of the tracker contains added capabilities of tracking cyclogenesis and identi-
fying cyclone thermodynamic phases. The identification of cyclone thermodynamic phases
requires that the input data contain temperature every 50 hPa from 300 to 500 hPa (for the
"vtt" scheme) or the geopotential height every 50 hPa from 300 to 900 hPa (for the "cps"
scheme).

11.2 Scripts

The forecasts products are obtained by running the products_wrapper, which calls
scripts/exhwrf_products.py after setting a few environment variables to re-direct the
standard output and standard error files. These files can be placed anywhere by changing
the environment variables REGRIBBER_LOGS and TRACKER_LOGS to the desired path.

101

11. Forecast Products

wrf_d01
27 km

80º x 80º

wrf_d03
3 km

7.2º x 6.5º

wrf_d02
9 km

11º x 10º

hwrfsat_i
0.1º

12º x 14º

hwrfsat_n
0.03º

7.5º x 9º

hwrfsat_p
0.25º

90º x 110º

hwrfsat_m
0.03º

12º x 15º

hwrfsat_c
0.1º

90º x 110º
Native WRF Grid

Output Grid

Legend

Figure 11.2: Naming convention, resolution, and size for the output grids that contain
satellite-derived products. Blue boxes indicate the grids from the wrfout files.
Green boxes are the grids in the final GRIB files.

The GFDL Vortex Tracker is driven by the wrapper script tracker_wrapper, which calls
scripts/exhwrf_track.py. The Python script runs the tracker on the processed GRIB
forecast files.

11.2.1 Overview of exhwrf_products.py

1. Initialize the objects used to run all components of HWRF by calling
hwrf_expt.init_module()

2. Launch the four parallel tasks. The parent process launches products, while the
subprocesses run copies of gribber and tracker. Each of these continually check
the availability of files before running.

3. Deliver products to com/ directory as the become available from the products,
gribber, and tracker processes.

Files delivered to com/ directory

The following examples are for Hurricane Sandy (2012), which was Atlantic Storm number
18. The string "sandy18" would be replaced by the name and number of the storm in
the given experiment. SID is the storm ID (i.e., 18L for Sandy). The "l" or "L" following
"sandy18" is a product of an operational naming convention requiring some files to have
identical counterparts, but different capitalization. In this case, the letter "L" denotes that
the files are being delivered for a storm in the Atlantic Basin. Capital YYYYMMDDHH denotes
analysis time, while lower case yyyymmddhh denotes forecast time.

102

11. Forecast Products

18l.YYYYMMDDHH.domain.center ASCII file containing the coordinates of the
domain center

18l.trak.hwrf.atcfunix.YYYYMMDDHH.combine Forecast track
18l.wrfout_d[01-03]_yyyy-mm-dd_hh:00:00 WRF fcst output for the first 9 hrs in 3-hr

increments
aal182012_HWRF_hPYHW_YYYYMMDDHH.dat a-deck file for this forecast period
sandy18l.YYYYMMDDHH.afos Storm position and heading/speed hourly

for 9 hours, 3 hourly afterward for delivery
to NHC

sandy18L.YYYYMMDDHH.afos Same as above
sandy18l.YYYYMMDDHH.binary_d[01-03] Binary forecasts on each domain
sandy18l.YYYYMMDDHH.fort.65 Land-sea mask for the coupler
sandy18l.YYYYMMDDHH.gsi_cvs[2-3].biascr Satellite bias correction file
sandy18l.YYYYMMDDHH.hwrf_d03.htcf Storm info from d03 every 5 mins
sandy18L.YYYYMMDDHH.hwrf_d03.htcf Same as above
sandy18l.YYYYMMDDHH.hwrf_d03.htcfstats Storm info from d03 every 3 hours
sandy18L.YYYYMMDDHH.hwrf_d03.htcfstats Same as above
sandy18l.YYYYMMDDHH.hwrfprs_c.
grb2f[00-126]

Non-satellite vars from all domains merged
onto 0.1◦ d01-sized grid

sandy18l.YYYYMMDDHH.hwrfprs_i.
grb2f[00-126]

Non-satellite vars from d02 on native d02
grid

sandy18l.YYYYMMDDHH.hwrfprs_m.
grb2f[00-126]

Non-satellite vars from d02 & d03 merged
onto 0.03◦ d02-sized grid

sandy18l.YYYYMMDDHH.hwrfprs_n.
grb2f[00-126]

Non-satellite vars from d03 on native d03
grid

sandy18l.YYYYMMDDHH.hwrfprs_p.
grb2f[00-126]

Non-satellite vars from all domains merged
onto 0.25◦ d01-sized grid

sandy18l.YYYYMMDDHH.hwrfsat_c.
grb2f[00-126]

Satellite vars from all domains merged onto
0.1◦ d01-sized grid

sandy18l.YYYYMMDDHH.hwrfsat_i.
grb2f[00-126]

Satellite vars from d02 on native d02 grid

sandy18l.YYYYMMDDHH.hwrfsat_m.
grb2f[00-126]

Satellite vars from d02 & d03 merged onto
0.03◦ d02-sized grid

sandy18l.YYYYMMDDHH.hwrfsat_n.
grb2f[00-126]

Satellite vars from d03 on native d03 grid

sandy18l.YYYYMMDDHH.hwrfsat_p.
grb2f[00-126]

Satellite vars from all domains merged onto
0.25◦ d01 grid

sandy18l.YYYYMMDDHH.hwrftrk.
grbf[00-126]

Tracker vars merged from all domains on a
0.03◦ grid, slightly larger than d02

sandy18l.YYYYMMDDHH.hwrftrk.
grbf[00-126].grbindex

Index file for hwrftrk

sandy18l.YYYYMMDDHH.namelist.input WRF namelist
sandy18l.YYYYMMDDHH.pom.[0000-0005].nc Daily ocean forecast files
sandy18l.YYYYMMDDHH.pom.el_initial.nc Init salinity data used for MPIPOM-TC
sandy18l.YYYYMMDDHH.pom.grid.nc Gridded ocean initialization data
sandy18l.YYYYMMDDHH.pom.ts_clim.nc Init climatological temperature data used for

MPIPOM-TC
sandy18l.YYYYMMDDHH.pom.ts_initial.nc Init temperature data used for MPIPOM-TC
sandy18l.YYYYMMDDHH.pom.uv_initial.nc Init wind data used for MPIPOM-TC
sandy18l.YYYYMMDDHH.rainfall.ascii
sandy18l.YYYYMMDDHH.resolution Text file containing info about nest motion
sandy18L.YYYYMMDDHH.resolution Same as above
sandy18l.YYYYMMDDHH.stats.short Storm info at each forecast hour
sandy18l.YYYYMMDDHH.stats.tpc Storm info at each forecast hour for delivery

to NHC
sandy18L.YYYYMMDDHH.stats.tpc Same as above
sandy18l.YYYYMMDDHH.swath.ctl GrADS control file for swath
sandy18l.YYYYMMDDHH.swath.dat Along-track wind and rain information

103

11. Forecast Products

sandy18l.YYYYMMDDHH.track_d03.patcf Tracker info from d03
sandy18l.YYYYMMDDHH.trak.hwrf.3hourly Tracker output in ATCF format
sandy18l.YYYYMMDDHH.trak.hwrf.atcfunix Same as above
sandy18l.YYYYMMDDHH.trak.hwrf.raw Same as above
sandy18l.YYYYMMDDHH.wind10hrly.ascii Hourly maximum 10m wind
sandy18l.YYYYMMDDHH.wind10m.ascii
sandy18l.YYYYMMDDHH.wrfanl_d02 Input analysis for d02
sandy18l.YYYYMMDDHH.wrfanl_d02_org Same as above
sandy18l.YYYYMMDDHH.wrfanl_d03 Input analysis for d03
sandy18l.YYYYMMDDHH.wrfanl_d03_org Same as above
sandy18l.YYYYMMDDHH.wrfbdy_d01 Boundary conditions for all forecast times
sandy18l.YYYYMMDDHH.wrfdiag_d01 WRF auxiliary output stream for d01
sandy18l.YYYYMMDDHH.wrfdiag_d02 WRF auxiliary output stream for d02
sandy18l.YYYYMMDDHH.wrfdiag_d03 WRF auxiliary output stream for d03
sandy18l.YYYYMMDDHH.wrfinput_d01 Input analysis for d01
sandy18l.YYYYMMDDHH.wrfinput_d01_org Same as above

Products

Products is a module that calls an NHCProducts object, whose run module lives in ush/h-
wrf/nhc_products.py, and is responsible for the following tasks.

1. Make namelist products.nml
2. Link the input files
3. Run nhc_products.exe
4. Deliver output

Output files:

An example for Hurricane Sandy (2012):

sandy18l.2012102812.wind10hrly.ascii
sandy18l.2012102812.rainfall.ascii
sandy18l.2012102812.wind10m.ascii
SANDY18L.2012102812.afos
SANDY18L.2012102812.stats.tpc
SANDY18L.2012102812.hwrf_d03.htcf

Status Check:

The string "WARNING: No subtasks incomplete. I think I am done run-
ning. Will exit regribber now." will appear in each of the products standard out
files.

Gribber

The Gribber is a GRIBTask object whose run module resides in ush/hwrf/gribtask.py.
Its primary function is to run copygb.exe to horizontally interpolate the native UPP output

104

11. Forecast Products

files to a variety of regular lat/lon grids.

Output files:

The following sets of files get delivered to the intercom/.

hwrftrk.YYYYMMDD.HH0000
hwrftrk.YYYYMMDD.HH0000.grbindex
parenthigh.YYYYMMDD.HH0000
trkbasic.YYYYMMDD.HH0000

Status Check:

The string "INFO: storm1: completed regribbing job for" will appear in each
of the POST standard output files, which will be set by the environment variable REGRIB-
BER_LOGS in the products_wrapper.

Executables:

copygb.exe

This executable performs two functions. The functions are separated in the explanation by
their respective numeric items.

FUNCTION
1. Interpolates a GRIB file to a user-specified grid
2. Combines two GRIB files

INPUT
1. ${hr_grid} – User-specified grid

One grib file, for example
2. ${hr_grid} – User-specified grid

Two GRIB files, for example

OUTPUT GRIB file on grid ${hr_grid}

USAGE
1. copygb.exe -xg "${hr_grid}" input_GRIB_file \

out_GRIB_file
2. When a "-M" option is used and the argument following it is a GRIB

file, the GRIB file will be interpreted as a merge file. This option
can be used to combine two GRIB files.
The following command will combine two GRIB files on different
grids, onto a grid specified by ${hr_grid}, placing the result in
out_GRIB_file.
copygb.exe -g "${hr_grid}" -xM input_GRIB_file_1 \
input_GRIB_file_2 out_GRIB_file

105

11. Forecast Products

Tracker

The TrackerTask is responsible for running the GFDL Vortex Tracker. The tracker reads
the HWRF postprocessed files in the combined domain. It produces a 3-hourly track and a
6-hourly track for the entire forecast length, as well as another 3-hourly track for the 12-hr
forecast, using a merged grid from all three domains with 0.03◦ resolution. The track for the
12-hr forecast is used in the vortex relocation procedure for the following cycle. The tracker
module resides in ush/hwrf/tracker.py and performs the following actions.

1. Link the input GRIB files
2. Make the tracker namelist
3. Run hwrf_gettrk.exe
4. Deliver files

Output files:

The following output files are an example for Hurricane Sandy (2012).

sandy18l.trak.hwrf.raw
sandy18l.trak.hwrf.atcfunix
sandy18l.trak.hwrf.3hourly
sandy18l.trak.hwrf.combine

Status Check:

The standard output file will contain the string "CRITICAL: Successful return sta-
tus from gettrk."

Executables:

hwrf_gettrk.exe

FUNCTION Runs the GFDL Vortex Tracker

INPUT fort.11 – GRIB file containing the postprocessed HWRF forecast
fort.12 – TCVitals file containing the first guess location of the forecast
vortex
fort.14 – TCVitals file used for tropical cyclogenesis tracking. This file
is not used in HWRF’s operational configuration. File fort.14, which can
be blank, should exist in the directory where the tracker is run, otherwise
the tracker will stop.
fort.15 – Forecast lead times (in minutes) the tracker will process
fort.31 – a GRIB index file generated by the program grbindex
input.namelist – namelist

OUTPUT fort.69 – Modified ATCF file
fort.64 – Modified ATCF file
fort.66 – Modified ATCF file produced only in "cyclgenesis mode"
fort.74 – Modified ATCF file produced when IKEFLAY=Y

106

11. Forecast Products

USAGE hwrf_gettrk.exe <namelist

Refer to Appendix C for a sample namelist and an explanation of contents of output files.

11.2.2 Additional Tracking Utilities

In addition to the utilities of the GFDL Vortex Tracker implemented by HWRF, there are
capabilities to generate phase space diagnostics and to run in cyclogenesis mode. The
wrapper and Python scripts automatically include these diagnostics. Just for reference, the
section below explains the steps necessary to compute phase space diagnostics.

Phase Space Diagnostics

1. In the GFDL Vortex Tracker namelist set the items listed below.
phaseflag=y
phasescheme=both or cps or vtt
wcore_depth=1.0

2. If phasescheme is set to cps, run hwrf_vint.exe to vertically interpolate the
geopotential from 300 to 900 hPa at a 50 hPa interval. Then append these geopoten-
tial variables to the tracker’s GRIB format input file.

3. If phasescheme is set to vtt , run hwrf_vint.exe to vertically interpolate the
temperature from 300 to 500 hPa at a 50 hPa interval. Then run hwrf_tave.exe to
obtain the average temperature between 300 and 500 hPa. This average temperature
field is appended to the tracker’s GRIB format input file.

4. If phasescheme is set to both, then both steps 2) and 3) are needed.
5. When the phase space diagnostics is performed, the output will be generated in

fort.64 as fields 37-41.

Executables:

hwrf_vint.exe

FUNCTION Interpolates from various pressure levels onto a regularly spaced grid,
with 50-hPa vertical level intervals. Each run only processes one lead
time. Therefore it is necessary to use this executable separately for all
lead times.

107

11. Forecast Products

INPUT fort.11 – GRIB file containing the postprocessed HWRF output with
temperature at least at 300 and 500 hPa.
fort.16 – text file containing the number of input pressure levels.
fort.31 – index file of fort.11
namelist – generated by echo "&timein \
ifcsthour=$fhour iparm=$gparm/" > namelist where $fhour is
the forecast lead time and $gparm is the variable to be processed. For
phase space diagnostics, geopotential height (when phasescheme=cps,
$gparm=7) or temperature (when phasescheme=vtt, $gparm=11) or
both (when phasescheme=both) need to be processed.

OUTPUT fort.51 – GRIB file that contains the temperature data on vertical levels
300, 350, 400, 450, and 500 hPa

USAGE hwrf_vint.exe < namelist

hwrf_tave.exe

FUNCTION Vertically averages temperature in the 500-300 hPa layer

INPUT fort.11 – GRIB file containing the temperature at least at levels
300, 350, 400, 450, and 500 hPa. This file can be generated by
hwrf_vint.exe
fort.16 – text file containing the number of input pressure levels.
fort.31 – index file of fort.11
namelist – generated by the command echo "&timein \
ifcsthour=$fhour, iparm=11/" > namelist

OUTPUT fort.51 – GRIB file containing the mean temperature in the 300-500
hPa layer.

USAGE hwrf_tave.exe < namelist

Running in Tracker Mode

1. In the GFDL Vortex Tracker namelist set the items listed below.
phaseflag=y
phasescheme=both or cps or vtt
wcore_depth=1.0

2. If phasescheme is set to cps, run hwrf_vint.exe to vertically interpolate the
geopotential from 300 to 900 hPa at a 50 hPa interval. Then append these geopoten-
tial variables to the tracker’s GRIB format input file.

3. If phasescheme is set to vtt , run hwrf_vint.exe to vertically interpolate the
temperature from 300 to 500 hPa at a 50 hPa interval. Then run hwrf_tave.exe to
obtain the average temperature between 300 and 500 hPa. This average temperature

108

11. Forecast Products

field is appended to the tracker’s GRIB format input file.
4. If phasescheme is set to both, then both steps 2) and 3) are needed.
5. When the phase space diagnostics is performed, the output will be generated in

fort.64 as fields 37-41 (see Appendix C).

11.3 How to Plot the Tracker Output Using ATCF_PLOT

The GFDL Vortex Tracker comes with atcf_plot, a set of GrADS scripts that can be used
to plot hurricane track files in ATCF format. These scripts can be found in the directory:
gfdl-vortextracker/trk_plot/plottrak.

To use atcf_plot to plot the storm’s track, perform the following steps.

• Enter the directory gfdl-vortextracker/trk_plot.
• Run gribmap on the GrADS ctl file plottrak.ctl by typing: gribmap -v -i

plottrak.ctl. gribmap is a GrADS utility that maps the contents of the binary
data using the ctl file. It creates a map (plottrak.ix) that points to the locations
where the requested binary data start for the different variables and levels.

You should see one line in the output that has "MATCH" in the string. Both the plot-
track.ctl and the newly created plottrak.ix map file need to be in the directory where
the script below is run.

• Edit the atcfplot.sh to set the following paths.
1. gradsv2 – path to the GrADS executable (for example, /contrib/grads/bin/-

gradsc).
2. GADDIR – path to the directory containing the supplemental font and map files

in for GrADS (for example, /contrib/grads/lib).
3. scrdir – path to the working directory (for example,

${SCRATCH}/sorc/gfdl-vortextracker/trk_plot/plottrak).
4. plotdir – path to the directory where the plot files will be created (for example,

${SCRATCH}/sorc/gfdl-vortextracker/trk_plot/plottrak/tracks).
• Edit atcfplot.gs to define the following paths.

1. rundir – same as scrdir in atcfplot.sh (note rundir must end with a "/")
2. netdir – same as plotdir in atcfplot.sh (note netdir must end with a "/")
3. Change all instances of HTUT to HCOM

• Edit get_mods.sh to define the following paths.
1. rundir – same as scrdir in atcfplot.sh
2. netdir – same as plotdir in atcfplot.sh
3. ndate – path to the script ndate.ksh
4. nhour – path to the script nhour.ksh

• Edit get_verif.sh to define the following paths.
1. rundir – same as scrdir in atcfplot.sh
2. netdir – same as plotdir in atcfplot.sh
3. ndate – path to the script ndate.ksh
4. nhour – path to the script nhour.ksh

109

11. Forecast Products

• The users need to insert or append their vortex tracker output, fort.64, into the file
aBASIN|SID|YYYY.dat. The following two commands are an example of how to do
this for Hurricane Sandy a-deck files.
sed -i ’s/HWRF/HCOM/g’ $COMhwrf/YYYYMMDDHH/18L/aal182012_HWRF_hPYHW_YYYYMMDDHH.dat

cat $COMhwrf/YYYYMMDDHH/18L/aal182012_HWRF_hPYHW_YYYYMMDDHH.dat aal182012.dat

• After setting up the paths to the correct locations in your system, run the script using
the following command.
atcfplot.sh YYYY BASIN

This will start a GUI window and read in ATCF format track files
a${BASIN}${SID}${YYYY}.dat in $rundir.

For example, the user can use the command atcfplot.sh 2011 al to plot the track files
aal${SID}2011.dat in $rundir.

When the GUI window appears, from the drop down menu, select a storm, start date, and a
model name ("atcfname" in the GFDL Vortex Tracker namelist), then click the "Plot" button
to plot the track. The plots can be exported to image files by using the "Main" and then
"Print" menu options. The default tracker namelist is set to use the ATCF model name
"HCOM". If the user changes this name in the tracker namelist, the ATCF_PLOT GUI will
not recognize the new name. In this case, the user needs to replace an unused atcfname
with the new atcfname. The atcfnames in the GUI can be found by searching in function
"modnames" in atcfplot.gs. Note all three instances of the unused atcfname need to be
replaced in atcfplot.gs.

For example, if "USER" was employed as the ATCF model name in the users’ GFDL Vor-
tex Tracker output fort.64, atcfplot.gs needs to be modified to have the ATCF_PLOT
program GUI interface show a button for the atcfname "USER". To do that, open atcf-
plot.gs, go to function "modnames", find an atcfname that will not be used, for example
"HCOM", and manually replace the string "HCOM" with "USER".

110

12
HWRF Idealized Tropical

Cyclone Simulation

12.1 Introduction

Initial conditions for the HWRF Idealized Tropical Cyclone case are specified using an
idealized vortex superposed on a base state quiescent sounding. The default initial vortex
has an intensity of 20 ms−1 and a radius of maximum winds of 90 km. To initialize the
idealized vortex, a nonlinear balance equation in pressure-based sigma coordinates is solved
within the rotated latitude-longitude E-grid framework.

The default initial ambient base state assumes an f-plane at the latitude of 12.5◦. The sea
surface temperature is time-invariant and horizontally homogeneous, with the default set to
302 K. No land is used in the simulation domain.

The lateral boundary conditions used in the HWRF idealized simulation are the same as used
in real data cases. This inevitably leads to some reflection when gravity waves emanating
from the vortex reach the outer domain lateral boundaries.

The idealized simulation uses the operational HWRF triple-nested domain configuration
with grid spacing at 27-, 9-, and 3-km. All the operational atmospheric physics, as well as
the supported experimental physics options in HWRF, can be used in the idealized HWRF
framework. The UPP (see Chapter 10) can be used to postprocess the idealized HWRF
simulation output.

111

12. HWRF Idealized Tropical Cyclone Simulation

The setup of the idealized simulation requires the use of WPS to localize the domain (ge-
ogrid.exe) and to process GFS data for initial and boundary conditions (ungrib.exe
and metgrid.exe). The initialization using WPS just provides a framework for the initial
conditions, which are actually specified in ideal.exe to be composed of a quiescent envi-
ronment with a prescribed vortex. The boundary conditions generated with WPS are also
overwritten by ideal.exe to be consistent with the quiescent environment.

The initial base state temperature and humidity profile is prescribed in file sound.d, while
the vortex properties are specified in input.d. The latter file is also used to specify options
for f-plane and β-plane.

12.2 How to Use HWRF for Idealized Tropical Cyclone Simulations

12.2.1 Source Code

This section describes the process to implement HWRF v3.6a in the idealized setting. Only
the WPS and WRFV3 components are required for the idealized tropical cyclone simulations.
The UPP can be used for postprocessing. The other HWRF components do not need to be
compiled. Please see Chapter 2 for instructions to compile the WPS, WRF, and, if desired,
UPP. Note that the executable file wrf.exe needed for the idealized simulation is not the
same as the one needed for the simulation for real data. Therefore, users should follow the
instructions specific for building the idealized wrf.exe. In this Users’ Guide, we assume
that the user will install HWRF in directory ${SCRATCH}/hwrfrun.

12.2.2 Input Files and Datasets

Two GFS GRIB files are needed to provide a template for creating the initial and lateral
boundary conditions. One of the GFS GRIB files should be the analysis valid at the same
time of the desired HWRF initialization. The other GRIB file should be a forecast, with lead
time equal to or greater than the desired HWRF simulation. The meteorological data in
these files will not be used to initialize the simulation – these files are for template purposes
only.

As an example, files 0825012000000 and 0825512000000, are included in the
tar file http://www.dtcenter.org/HurrWRF/users/downloads/datasets/Idealized_
2014/hwrfv3.6a_idealized.tar.gz.

Next the user must ensure that all the input files below exist in
${SCRATCH}/hwrfrun/sorc/WRFV3/test/nmm_tropical_cyclone.

112

http://www.dtcenter.org/HurrWRF/users/downloads/datasets/Idealized_2014/hwrfv3.6a_idealized.tar.gz
http://www.dtcenter.org/HurrWRF/users/downloads/datasets/Idealized_2014/hwrfv3.6a_idealized.tar.gz

12. HWRF Idealized Tropical Cyclone Simulation

namelist.wps Namelist file for WPS; Note that geog_data_path should be
modified to point to the actual path of the geog data files.

namelist.input Namelist file for WRF
input.d Vortex description file
sound.d Sounding data; four sounding files

(sound.d, sound_gfdl.d, sound_jordan.d,
and sound_wet.d) are provided in
${SCRATCH}/hwrfrun/sorc/WRFV3/test/\
nmm_tropical_cyclone, however, only the one named
sound.d will be used. In order to use a different sounding,
rename it to sound.d.

storm.center Vortex center file
sigma.d Sigma file

12.2.3 General Instructions for Running the Executables

To perform the idealized simulation the following executables need to be
run: geogrid.exe, ungrib.exe, mod_levels.exe, metgrid.exe, ideal.exe,
and wrf.exe. Since the executables are compiled with distributed memory capability, many
computing platforms require they be run on compute nodes. Instructions for running jobs
on compute nodes can be found in Section 3.5.1.

The wrappers and Python scripts described in previous chapters for running HWRF using
real data are not used for the idealized simulation. Since the workflow of the idealized
simulation is fairly simple, the commands can be run manually.

12.2.4 Running WPS to Create the ICs and LBCs

The steps below outline the procedure to preprocess the data for the creation of initial and
boundary conditions for the idealized simulation. It assumes that the run will be conducted
in a working directory named $WORKDIR/wpsprd.

1. Create and change into directory for running WPS.
mkdir $WORKDIR/wpsprd
cd $WORKDIR/wpsprd

2. Run geogrid
a) Make a directory for the geogrid table and change into it.

mkdir geogrid
cd geogrid

b) Link the geogrid table.
ln -fs ${SCRATCH}/hwrfrun/sorc/WPSV3/geogrid/\
GEOGRID.TBL.NMM ./GEOGRID.TBL

c) Copy the WPS namelist.
cd $WORKDIR/wpsprd

113

12. HWRF Idealized Tropical Cyclone Simulation

cp ${SCRATCH}/hwrfrun/sorc/WRFV3/test/\
nmm_tropical_cyclone/namelist.wps .

d) Edit namelist.wps to make sure geog_data_path points to the location of the
WPS geographical data files.

e) Run executable geogrid.exe on the command line or submit it to a compute
node or batch system.

${SCRATCH}/hwrfrun/sorc/WPSV3/geogrid.exe
f) Verify that the output files were created.

ls -l geo_nmm_nest.l01.nc geo_nmm.d01.nc
3. Run ungrib

a) Link the ungrib table.
ln -fs ${SCRATCH}/hwrfrun/sorc/WPSV3/ungrib/\
Variable_Tables/Vtable.GFS ./Vtable

b) Extract the two input GFS files.
Download tarfile with GFS input data http://www.dtcenter.org/
HurrWRF/users/downloads/datasets/Idealized_2014/hwrfv3.6a_
idealized.tar.gz.
tar -xzvf hwrfv3.6a_idealized.tar.gz
gunzip 0825012000000.gz
gunzip 0825512000000.gz
ls -l 0825012000000 0825512000000

c) Link the GFS files to the names expected by ungrib.
${SCRATCH}/hwrfrun/sorc/WPSV3/link_grib.csh \
0825012000000 0825512000000

d) Run executable ungrib.exe on the command line or submitting it to a compute
node or batch system.

${SCRATCH}/hwrfrun/sorc/WPSV3/ungrib.exe
e) Verify that the output files were created.

ls -l GFS:2008-09-06_12 GFS:2008-09-11_12
4. Run metgrid

a) Make a directory for the metgrid table and change into it.
mkdir metgrid
cd metgrid

b) Link the metgrid table.
ln -fs ${SCRATCH}/hwrfrun/sorc/WPSV3/metgrid/\
METGRID.TBL.NMM ./METGRID.TBL

c) Run executable mod_levels.exe twice on the command line or submitting it to
a compute node or batch system. This program is used to reduce the number
of vertical levels in the GFS file. Only the levels listed in variable press_pa in
namelist.wps will be retained.

cd $WORKDIR/wpsprd
${SCRATCH}/hwrfrun/sorc/WPSV3/util/mod_levs.exe \
GFS:2008-09-06_12 new_GFS:2008-09-06_12
${SCRATCH}/hwrfrun/sorc/WPSV3/util/mod_levs.exe \
GFS:2008-09-11_12 new_GFS:2008-09-11_12

d) Verify that the output files were created.
ls -l new_GFS:2008-09-06_12 new_GFS:2008-09-11_12

e) Run executable metgrid.exe on the command line or submitting it to a com-

114

http://www.dtcenter.org/HurrWRF/users/downloads/datasets/Idealized_2014/hwrfv3.6a_idealized.tar.gz
http://www.dtcenter.org/HurrWRF/users/downloads/datasets/Idealized_2014/hwrfv3.6a_idealized.tar.gz
http://www.dtcenter.org/HurrWRF/users/downloads/datasets/Idealized_2014/hwrfv3.6a_idealized.tar.gz

12. HWRF Idealized Tropical Cyclone Simulation

pute node or batch system.
${SCRATCH}/hwrfrun/sorc/WPSV3/metgrid.exe

f) Verify that the output files were created.
ls -l met_nmm.d01.2008-09-06_12:00:00.nc \
met_nmm.d01.2008-09-11_12:00:00.nc

12.2.5 Running ideal.exe and wrf.exe

The steps below outline the procedure to create initial and boundary conditions for the
idealized simulation. It assumes that the run will be conducted in a working directory
named $WORKDIR/wrfprd.

1. Create and change into directory for running ideal and real.
mkdir $WORKDIR/wrfprd
cd $WORKDIR/wrfprd

2. Run ideal
a) Link WRF input files.

ln -fs ${SCRATCH}/hwrfrun/sorc/WRFV3/run/ETAMPNEW_DATA \
ETAMPNEW_DATA
ln -fs ${SCRATCH}/hwrfrun/sorc/WRFV3/run/GENPARM.TBL \
GENPARM.TBL
ln -fs ${SCRATCH}/hwrfrun/sorc/WRFV3/run/LANDUSE.TBL \
LANDUSE.TBL
ln -fs ${SCRATCH}/hwrfrun/sorc/WRFV3/run/SOILPARM.TBL \
SOILPARM.TBL
ln -fs ${SCRATCH}/hwrfrun/sorc/WRFV3/run/VEGPARM.TBL \
VEGPARM.TBL
ln -fs ${SCRATCH}/hwrfrun/sorc/WRFV3/run/tr49t67 tr49t67
ln -fs ${SCRATCH}/hwrfrun/sorc/WRFV3/run/tr49t85 tr49t85
ln -fs ${SCRATCH}/hwrfrun/sorc/WRFV3/run/tr67t85 tr67t85

b) Link the WPS files.
ln -fs $WORKDIR/wpsprd/met_nmm* .
ln -fs $WORKDIR/wpsprd/geo_nmm* .

c) Copy the idealized simulation input files.
cp ${SCRATCH}/hwrfrun/sorc/WRFV3/test/\
nmm_tropical_cyclone/input.d .
cp ${SCRATCH}/hwrfrun/sorc/WRFV3/test/\
nmm_tropical_cyclone/sigma.d .
cp ${SCRATCH}/hwrfrun/sorc/WRFV3/test/\
nmm_tropical_cyclone/sound.d .
cp ${SCRATCH}/hwrfrun/sorc/WRFV3/test/\
nmm_tropical_cyclone/storm.center .

d) Copy namelist input.
cp ${SCRATCH}/hwrfrun/sorc/WRFV3/test/\
nmm_tropical_cyclone/namelist.input .

e) Edit and modify files input.d, sound.d, if desired.

115

12. HWRF Idealized Tropical Cyclone Simulation

• The sounding files provided have 30 vertical levels. In order to use a sound-
ing with different number of levels, it is necessary to modify the source code
in ${SCRATCH}/hwrfrun/sorc/WRFV3/dyn_nmm/\
module_initialize_tropical_cyclone.F. In subroutine tem, parameter
nv should be modified from 30 to the number of levels in the sounding.

• File storm.center should not be altered to make sure the storm is located
in the center of the inner nest.

• File sigma.d should not be modified as it does not pertain to the vertical
levels of the sounding or of the simulation. Rather, it defines the vertical
levels used to create the initial vortex.

f) Run executable ideal.exe on the command line or submitting it to a compute
node or batch system.

${SCRATCH}/hwrfrun/sorc/WRFV3/main/ideal.exe
g) Verify that the output files were created.

ls -l wrfinput_d01 wrfbdy_d01 fort.65
3. Run WRF

a) Run executable wrf.exe on the command line or submitting it to a compute
node or batch system.

${SCRATCH}/hwrfrun/sorc/WRFV3/main/wrf.exe
Note that executable wrf.exe must have been created using the instructions
for idealized simulations described in Chapter 2. The executable created
for regular HWRF simulations that ingest real data should not be used to
conduct idealized simulations.

b) Verify that the output files were created.
ls -l wrfout_d01* wrfout_d02* wrfout_d03*

116

A
Example of Computational

Resources

Table A.1 gives an example of the resources required to run HWRF compiled with Intel on
the NOAA Research Supercomputer Jet and should be used as a guideline for scaling to the
resources at the individual user’s disposal. In the example below, the available resources
include 5440 cores with 16 2.6 GHz per node. Each node has 32 GB (2 GB per core). With
peak performance capable of 113.2 TF, and end-to-end run of HWRF would take about 4
hours.

117

A. Example of Computational Resources

Wall clock time Total Cores Core Layout Virtual
Memory

launcher_wrapper 10:00 1 n/a n/a
init_gdas_wrapper 2:39:00 32 n/a n/a
init_gfs_wrapper 2:39:00 32 n/a 30 GB
init_ocean_wrapper 1:39:00 9 n/a 30 GB
relocate_wrapper 3:00:00 n/a nodes=1 20 GB
gsi_d02_wrapper 0:39:00 n/a nodes=4:ppn=9+1:ppn=4 25 GB
gsi_d03_wrapper 0:39:00 n/a nodes=15:ppn=10 25 GB
merge_wrapper 0:39:00 1 n/a n/a
unpost_wrapper 0:05:00 1 n/a n/a
forecast_wrapper 3:40:00 210 n/a n/a
post_wrapper 4:00:00 12 n/a 25 GB
products_wrapper 3:00:00 1 n/a 30 GB

Table A.1: Example of resources required to run HWRF at near operational capability.

118

B
Example WRF Namelist

The WRF namelist used for the release case, Hurricane Sandy (2012), is listed below.

&time_control
start_year = 2012, 2012, 2012,
start_month = 10, 10, 10,
start_day = 28, 28, 28,
start_hour = 6, 6, 6,
start_minute = 0, 0, 0,
start_second = 0, 0, 0,
end_year = 2012, 2012, 2012,
end_month = 11, 11, 11,
end_day = 2, 2, 2,
end_hour = 12, 12, 12,
end_minute = 0, 0, 0,
end_second = 0, 0, 0,
interval_seconds = 21600,
history_interval = 180, 180, 180,
auxhist1_interval = 60, 60, 60,
auxhist2_interval = 60, 60, 60,
auxhist3_interval = 180, 180, 180,
history_end = 540, 540, 540,
auxhist2_end = 540, 540, 540,
auxhist1_outname = "wrfdiag_d<domain>",
auxhist2_outname = "wrfout_d<domain>_<date>",
auxhist3_outname = "wrfout_d<domain>_<date>",
frames_per_outfile = 1, 1, 1,
frames_per_auxhist1 = 999, 999, 999,
frames_per_auxhist2 = 1, 1, 1,
frames_per_auxhist3 = 1, 1, 1,
analysis = F, T, T,
restart = F,
restart_interval = 36000,
reset_simulation_start = F,

119

B. Example WRF Namelist

io_form_input = 2,
io_form_history = 2,
io_form_restart = 2,
io_form_boundary = 2,
io_form_auxinput1 = 2,
io_form_auxhist1 = 202,
io_form_auxhist2 = 2,
io_form_auxhist3 = 2,
auxinput1_inname = "met_nmm.d<domain>.<date>",
debug_level = 1,
tg_reset_stream = 1,
override_restart_timers = T,
io_form_auxhist4 = 2,
io_form_auxhist5 = 2,
io_form_auxhist6 = 2,
io_form_auxinput2 = 2,
nocolons = F,
/
&fdda
/
&domains
time_step = 45,
time_step_fract_num = 0,
time_step_fract_den = 1,
max_dom = 3,
s_we = 1, 1, 1,
e_we = 216, 106, 198,
s_sn = 1, 1, 1,
e_sn = 432, 204, 354,
s_vert = 1, 1, 1,
e_vert = 61, 61, 61,
dx = 0.18, 0.06, 0.02,
dy = 0.18, 0.06, 0.02,
grid_id = 1, 2, 3,
tile_sz_x = 0,
tile_sz_y = 0,
numtiles = 1,
nproc_x = -1,
nproc_y = -1,
parent_id = 0, 1, 2,
parent_grid_ratio = 1, 3, 3,
parent_time_step_ratio = 1, 3, 3,
i_parent_start = 0, 96, 20,
j_parent_start = 0, 219, 45,
feedback = 1,
num_moves = -99,
num_metgrid_levels = 27,
p_top_requested = 200.0,
ptsgm = 15000.0,

120

B. Example WRF Namelist

eta_levels = 1.0, 0.995253, 0.990479, 0.985679, 0.980781,
0.975782, 0.970684, 0.965486, 0.960187,
0.954689, 0.948991, 0.943093, 0.936895,
0.930397, 0.923599, 0.916402, 0.908404,
0.899507, 0.888811, 0.876814, 0.862914,
0.847114, 0.829314, 0.809114, 0.786714,
0.762114, 0.735314, 0.706714, 0.676614,
0.645814, 0.614214, 0.582114, 0.549714,
0.517114, 0.484394, 0.451894, 0.419694,
0.388094, 0.356994, 0.326694, 0.297694,
0.270694, 0.245894, 0.223694, 0.203594,
0.185494, 0.169294, 0.154394, 0.140494,
0.127094, 0.114294, 0.101894, 0.089794,
0.078094, 0.066594, 0.055294, 0.044144,
0.033054, 0.022004, 0.010994, 0.0,

use_prep_hybrid = T,
num_metgrid_soil_levels = 2,
/
&physics
num_soil_layers = 4,
mp_physics = 85, 85, 85,
ra_lw_physics = 98, 98, 98,
ra_sw_physics = 98, 98, 98,
sf_sfclay_physics = 88, 88, 88,
sf_surface_physics = 88, 88, 88,
bl_pbl_physics = 3, 3, 3,
cu_physics = 84, 84, 0,
mommix = 1.0, 1.0, 1.0,
var_ric = 1.0,
coef_ric_l = 0.16,
coef_ric_s = 0.25,
h_diff = 1.0, 1.0, 1.0,
gwd_opt = 2, 0, 0,
sfenth = 0.0, 0.0, 0.0,
nrads = 80, 240, 720,
nradl = 80, 240, 720,
nphs = 2, 6, 6,
ncnvc = 2, 6, 6,
movemin = 3, 6, 12,
gfs_alpha = 0.7, 0.7, 0.7,
sas_pgcon = 0.55, 0.2, 0.2,
sas_mass_flux = 0.5, 0.5, 0.5,
co2tf = 1,
vortex_tracker = 2, 2, 7,
nomove_freq = 0, 6, 6,
tg_option = 1,
ntornado = 1, 3, 12,
/
&dynamics
non_hydrostatic = T, T, T,
euler_adv = F,
wp = 0, 0, 0,
coac = 0.75, 3.0, 4.0,
codamp = 6.4, 6.4, 6.4,
terrain_smoothing = 2,
/
&bdy_control
spec_bdy_width = 1,

121

B. Example WRF Namelist

specified = T,
/
&namelist_quilt
poll_servers = T,
nio_tasks_per_group = 4,
nio_groups = 4,
/
&logging
compute_slaves_silent = T,
io_servers_silent = T,
stderr_logging = 0,
/

122

C
Sample GFDL Vortex Tracker

Namelist

Sample namelist

inp%bcc First 2 digits of the year for the initial time of the forecast (e.g.,
the "20" in "2012")

inp%byy Last 2 digits of the year for the initial time of the forecast (e.g.,
the "12" in "2012")

inp%bmm 2-digit month (01, 02, etc) for the initial time of the forecast
inp%bdd 2-digit day for the initial time of the forecast
inp%bhh 2-digit hour for the initial time of the forecast
inp%model Model ID number as defined by the user in the script. This

is used in subroutine getdata to define what the GRIB IDs
are for surface wind levels. Create a unique number in the
script for your model and make sure you have the corre-
sponding IDs set up for it in subroutine getdata. For HWRF
use 17. The Model ID numbers for other models are listed below:

(1) GFS, (2) MRF, (3) UKMET, (4) ECMWF,
(5) NGM, (6) NAM, (7) NOGAPS, (8) GDAS,
(10) NCEP Ensemble, (11) ECMWF Ensemble,
(13) SREF Ensemble, (14) NCEP Ensemble, (15) CMC,
(16) CMC Ensemble, (18) HWRF Ensemble,
(19) HDAS,
(20) Ensemble RELOCATION (21) UKMET hi-res (NHC)

123

C. Sample GFDL Vortex Tracker Namelist

inp%lt_units ’hours’ or ’minutes’, this defines the lead time units used by the
PDS in your GRIB header

inp%file_seq ’onebig’ or ’multi’, this specifies if the tracker will process one big
input file or multiple files for each individual lead times. ’onebig’
is used as the default method in the community HWRF scripts

inp%modtyp Type of the model. Either ’global’ or ’regional’. For HWRF,
choose ’regional’

inp%nesttyp Type of the nest grid. Either ’moveable’ or ’fixed’. For HWRF,
choose ’moveable’

fnameinfo%gmodname Defines the model name in the input files, e.g., ’hwrf’. Only when
inp%file_seq=’multi’

fnameinfo%rundescr Describes the model runs in the input files, e.g., ’combined’.
Only when inp%file_seq= ’multi’

fnameinfo%atcfdescr Describe the storm information in the input files, e.g., ’irene09l’.
Only when inp%file_seq=’multi’

atcfnum Obsolete; can be set to any integer
atcfname Character model ID that will appear in the ATCF output (e.g.,

GFSO, HWRF, AHW, HCOM etc)
atcfymdh 10-digit yyyymmddhh date that will be used in output text track

files
atcffreq Frequency (in centahours) of output for atcfunix.Default value is

600 (six hourly).
trkrinfo%westbd For genesis runs, the western boundary for searching for new

storms. Does not need to match the boundaries of your grid, it
can be smaller

trkrinfo%eastbd For genesis runs, the eastern boundary for searching for new
storms. Does not need to match the boundaries of your grid, it
can be smaller than your grid.

trkrinfo%northbd For genesis runs, the northern boundary for searching for new
storms. Does not need to match the boundaries of your grid, it
can be smaller than your grid.

trkrinfo%southbd For genesis runs, the southern boundary for searching for new
storms. Does not need to match the boundaries of your grid, it
can be smaller than your grid.

trkrinfo%type trkrinfo%type defines the type of tracking to do. A ’tracker’ run
functions as the standard TC tracker and tracks only storms
from the TC Vitals. ’tcgen’ and ’midlat’ run in genesis mode and
will look for new storms in addition to tracking from TC Vitals.
’tcgen’ will look for all parameters at the various vertical levels,
while ’midlat’ will only look for MSLP and no checks are per-
formed to differentiate tropical from non-tropical cyclones.For
HWRF, choose ’tracker’.

trkrinfo%mslpthresh Threshold for the minimum MSLP gradient (units hPa/km) that
must be met in order to continue tracking.

trkrinfo%v850thresh Threshold for the minimum azimuthally-average 850 hPa cy-
clonic tangential wind speed (m/s) that must be exceeded in or-
der to keep tracking.

trkrinfo%gridtype ’global’ or ’regional’, this defines the type of domain grid. For
HWRF or other limited area models, choose ’regional’.

124

C. Sample GFDL Vortex Tracker Namelist

trkrinfo%contint This specifies the interval (in Pa) used by subroutine
check_closed_contour to check for a closed contour in the
mslp field when running in genesis mode. Note that
check_closed_contour is also called from the routine that checks
for a warm core, but the contour interval is hard-wired in the
executable as 1.0 degree K for that usage.

trkrinfo%out_vit This is only set to ’y’ if the tracker is running in genesis mode,
and it tells the tracker to write out a "TC Vitals" record for any
storms that it finds at the model initialization time. For HWRF,
choose ’n’.

phaseflag ’y’ or ’n’, tells the program whether or not to determine the
cyclone thermodynamic phase

phasescheme ’cps’, ’vtt’, ’both’, tells the program which scheme to use for
checking the cyclone phase. ’cps’ is Hart’s cyclone phase space,
’vtt’ is a simple 300-500 hPa warm core check based on Vitart,
and ’both’ tells the program to use both schemes. Not used if
phaseflag=’n’

wcore_depth The contour interval (in deg K) used in determining if a closed
contour exists in the 300-500 hPa temperature data, for use with
the vtt scheme

structflag ’y’ or ’n’, tells the program whether or not to determine the
cyclone thermodynamic structure.

Ikeflag ’y’ or ’n’, tells the program whether or not to calculate the Inte-
grated Kinetic Energy (IKE) and Storm Surge Damage Potential
(SDP).

use_waitfor ’y’ or ’n’, for waiting for input files. Use ’n’ unless for real-time
operational runs.

verb Level of detail printed to terminal. Choose from 0 (no output),1
(error messages only), 2 (more messages), 3 (all messages).

Contents of the output files

A sample of the vortex tracker output fort.69 is listed below:
AL, 18, 2012102806, 03, HCOM, 00000, 315N, 737W, 65, 949, XX, 34, NEQ, 0351, 0106, 0141, 0329, 0, 0, 36
AL, 18, 2012102806, 03, HCOM, 00000, 315N, 737W, 65, 949, XX, 50, NEQ, 0058, 0058, 0070, 0070, 0, 0, 36
AL, 18, 2012102806, 03, HCOM, 00000, 315N, 737W, 65, 949, XX, 64, NEQ, 0000, 0000, 0039, 0037, 0, 0, 36
AL, 18, 2012102806, 03, HCOM, 00300, 319N, 731W, 65, 951, XX, 34, NEQ, 0333, 0133, 0205, 0323, 0, 0, 30
AL, 18, 2012102806, 03, HCOM, 00300, 319N, 731W, 65, 951, XX, 50, NEQ, 0064, 0065, 0065, 0058, 0, 0, 30
AL, 18, 2012102806, 03, HCOM, 00300, 319N, 731W, 65, 951, XX, 64, NEQ, 0035, 0043, 0045, 0000, 0, 0, 30
AL, 18, 2012102806, 03, HCOM, 00600, 323N, 724W, 60, 956, XX, 34, NEQ, 0313, 0173, 0205, 0308, 0, 0, 39
AL, 18, 2012102806, 03, HCOM, 00600, 323N, 724W, 60, 956, XX, 50, NEQ, 0068, 0080, 0076, 0043, 0, 0, 39
AL, 18, 2012102806, 03, HCOM, 00900, 329N, 718W, 57, 959, XX, 34, NEQ, 0297, 0192, 0217, 0306, 0, 0, 43
AL, 18, 2012102806, 03, HCOM, 00900, 329N, 718W, 57, 959, XX, 50, NEQ, 0064, 0069, 0054, 0000, 0, 0, 43
AL, 18, 2012102806, 03, HCOM, 01200, 337N, 715W, 57, 959, XX, 34, NEQ, 0274, 0280, 0257, 0285, 0, 0, 42
AL, 18, 2012102806, 03, HCOM, 01200, 337N, 715W, 57, 959, XX, 50, NEQ, 0076, 0076, 0000, 0041, 0, 0, 42
AL, 18, 2012102806, 03, HCOM, 01500, 344N, 713W, 58, 958, XX, 34, NEQ, 0319, 0269, 0274, 0323, 0, 0, 41
AL, 18, 2012102806, 03, HCOM, 01500, 344N, 713W, 58, 958, XX, 50, NEQ, 0125, 0060, 0146, 0094, 0, 0, 41
AL, 18, 2012102806, 03, HCOM, 01800, 349N, 716W, 64, 957, XX, 34, NEQ, 0343, 0340, 0269, 0319, 0, 0, 106
AL, 18, 2012102806, 03, HCOM, 01800, 349N, 716W, 64, 957, XX, 50, NEQ, 0163, 0127, 0153, 0159, 0, 0, 106
AL, 18, 2012102806, 03, HCOM, 02100, 353N, 717W, 75, 955, XX, 34, NEQ, 0351, 0264, 0252, 0290, 0, 0, 39

Column 1: basin name. "AL" represents Atlantic and "EP" northeast Pacific.
Column 2: ATCF storm ID number. Sandy was the 18th storm in the Atlantic Basin in 2012.
Column 3: model starting time.
Column 4: constant and 03 simply indicates that this record contains model forecast data.
Column 5: model ATCF name.

125

C. Sample GFDL Vortex Tracker Namelist

Column 6: forecast lead time in hours multiplied by 100 (e.g, 00900 represents 9.00 h).
Column 7-8: vortex center position (latitude and longitude multiplied by 10).
Column 9: vortex maximum 10-m wind (in kt).
Column 10: vortex minimum MSLP (in hPa).
Column 11: placeholder for character strings that indicate whether the storm is a depression,

tropical storm, hurricane, subtropical storm etc. Currently, that storm type char-
acter string is only used for the observed storm data in the NHC Best Track data
set.

Column 12: thresholds wind speed in knots, an identifier that indicates whether this record
contains radii for the 34-, 50- or 64-knot wind thresholds.

Column 13: "NEQ" indicates that the four radii values that follow will begin in the northeast
quadrant and progress clockwise.

Column 14-17: wind radii (in nm) for the threshold winds in each quadrant.
Column 18-19: not used.
Column 20: radius of maximum winds, in nautical miles.

A sample of the vortex tracker output fort.64 is listed below:
AL, 18, 2012102806, 03, HCOM, 000, 315N, 737W, 65, 949, XX, 34, NEQ, 0351, 0106, 0141, 0329, 0, 0, 36, 0, 0, , 0, , 0, 0, , , , , 0, 0, 0,
0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999
AL, 18, 2012102806, 03, HCOM, 000, 315N, 737W, 65, 949, XX, 50, NEQ, 0058, 0058, 0070, 0070, 0, 0, 36, 0, 0, , 0, , 0, 0, , , , , 0, 0, 0,
0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999
AL, 18, 2012102806, 03, HCOM, 000, 315N, 737W, 65, 949, XX, 64, NEQ, 0000, 0000, 0039, 0037, 0, 0, 36, 0, 0, , 0, , 0, 0, , , , , 0, 0,
0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999
AL, 18, 2012102806, 03, HCOM, 003, 319N, 731W, 65, 951, XX, 34, NEQ, 0333, 0133, 0205, 0323, 0, 0, 30, 0, 0, , 0, , 0, 0, , , , , 0, 0, 0,
0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999
AL, 18, 2012102806, 03, HCOM, 003, 319N, 731W, 65, 951, XX, 50, NEQ, 0064, 0065, 0065, 0058, 0, 0, 30, 0, 0, , 0, , 0, 0, , , , , 0, 0, 0,
0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999
AL, 18, 2012102806, 03, HCOM, 003, 319N, 731W, 65, 951, XX, 64, NEQ, 0035, 0043, 0045, 0000, 0, 0, 30, 0, 0, , 0, , 0, 0, , , , , 0, 0, 0,
0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999
AL, 18, 2012102806, 03, HCOM, 006, 323N, 724W, 60, 956, XX, 34, NEQ, 0313, 0173, 0205, 0308, 0, 0, 39, 0, 0, , 0, , 0, 0, , , , , 0, 0, 0,
0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999
AL, 18, 2012102806, 03, HCOM, 006, 323N, 724W, 60, 956, XX, 50, NEQ, 0068, 0080, 0076, 0043, 0, 0, 39, 0, 0, , 0, , 0, 0, , , , , 0, 0,
0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999
AL, 18, 2012102806, 03, HCOM, 009, 329N, 718W, 57, 959, XX, 34, NEQ, 0297, 0192, 0217, 0306, 0, 0, 43, 0, 0, , 0, , 0, 0, , , , , 0, 0, 0,
0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999
AL, 18, 2012102806, 03, HCOM, 009, 329N, 718W, 57, 959, XX, 50, NEQ, 0064, 0069, 0054, 0000, 0, 0, 43, 0, 0, , 0, , 0, 0, , , , , 0, 0,
0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999
AL, 18, 2012102806, 03, HCOM, 012, 337N, 715W, 57, 959, XX, 34, NEQ, 0274, 0280, 0257, 0285, 0, 0, 42, 0, 0, , 0, , 0, 0, , , , , 0, 0, 0,
0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999
AL, 18, 2012102806, 03, HCOM, 012, 337N, 715W, 57, 959, XX, 50, NEQ, 0076, 0076, 0000, 0041, 0, 0, 42, 0, 0, , 0, , 0, 0, , , , , 0, 0, 0,
0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999AL, 18, 2012102806, 03, HCOM, 015, 344N, 713W, 58, 958, XX, 34, NEQ,
0319, 0269, 0274, 0323, 0, 0, 41, 0, 0, , 0, , 0, 0, , , , , 0, 0, 0, 0, THERMO PARAMS, -9999, -9999, -9999, U, 10, DT, -999

Column 1-20: same as fort.69 except that column 6, the forecast lead time, instead of being
a 5-digit integer as in fort.69, is a 3-digit integer.

Column 21-35: space fillers.
Column 36: "THERMO PARAMS" indicating that thermodynamics parameters will follow.
Column 37-39: The three cyclone phase space parameters, and all values shown have been

multiplied by a factor of 10. The values are listed below.

1. Parameter B (left-right thickness asymmetry)
2. Thermal wind (warm/cold core) value for lower troposphere (900-600 hPa)
3. Thermal wind value for upper troposphere (600-300 hPa)

Column 40: Presence of a warm core. In this sample it is "U", which stands for "undeter-
mined", meaning the warm core check was not performed. When the warm core
check is performed, this field will be either ’Y’ or ’N’, indicating whether the
warm core is identified or not.

126

C. Sample GFDL Vortex Tracker Namelist

Column 41: Warm core strength x 10 (in degrees). It indicates the value of the contour
interval that was used in performing the check for the warm core in the 300-500
hPa layer.

Column 42-43: Constant strings.

A sample of the vortex tracker output fort.66 is listed below:

TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 000, 204N, 706W, 87, 978, XX, 34, NEQ, 0103, 0077, 0058,
0095, 1005, 56, 24, -999, -9999, -9999, U, 288, 39, 1191, 6649, 1186, 5714
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 000, 204N, 706W, 87, 978, XX, 50, NEQ, 0058, 0042, 0032,
0054, 1005, 56, 24, -999, -9999, -9999, U, 288, 39, 1191, 6649, 1186, 5714
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 000, 204N, 706W, 87, 978, XX, 64, NEQ, 0043, 0027, 0019,
0041, 1005, 56, 24, -999, -9999, -9999, U, 288, 39, 1191, 6649, 1186, 5714
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 006, 208N, 714W, 94, 965, XX, 34, NEQ, 0156, 0096, 0059,
0145, 976, 17, 21, -999, -9999, -9999, U, 292, 45, 1164, 3306, 1116, 3302
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 006, 208N, 714W, 94, 965, XX, 50, NEQ, 0065, 0056, 0037,
0058, 976, 17, 21, -999, -9999, -9999, U, 292, 45, 1164, 3306, 1116, 3302
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 006, 208N, 714W, 94, 965, XX, 64, NEQ, 0047, 0031, 0030,
0042, 976, 17, 21, -999, -9999, -9999, U, 292, 45, 1164, 3306, 1116, 3302
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 012, 209N, 722W, 93, 964, XX, 34, NEQ, 0123, 0098, 0059,
0104, 979, 21, 21, -999, -9999, -9999, U, 282, 42, 1187, 3668, 1122, 2694
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 012, 209N, 722W, 93, 964, XX, 50, NEQ, 0069, 0053, 0047,
0058, 979, 21, 21, -999, -9999, -9999, U, 282, 42, 1187, 3668, 1122, 2694
TG, 0001, 2011082312_F000_204N_0706W_FOF, 2011082312, 03, HCOM, 012, 209N, 722W, 93, 964, XX, 64, NEQ, 0044, 0033, 0033,
0044, 979, 21, 21, -999, -9999, -9999, U, 282, 42, 1187, 3668, 1122, 2694

Column 1: "TG", the basin id for cyclogenesis (when trkrinfo%type is set to midlat, this id is
named "ML")

Column 2: the number of cyclogenesis the tracker identified
Column 3: the ID for the cyclogenesis, ${YYYYMMDDHH}_F${FFF}_$Lat_$Lon_FOF where

YYYYMMDDHH, FFF, Lat and Lon are the model initialization time, the forecast
lead time, the latitude and the longitude, respectively, in which the cyclogenesis
was first identified

Column 4-18: same as Columns 3-17 in fort.64
Column 19: pressure of last closed isobar (in hPa)
Column 20: radius of last closed isobar (nm)
Column 21: radius of maximum wind (nm)
Column 22-24: The cyclone phase space parameters, and all values shown have been multiplied

by a factor of 10. The values are listed below

1. Parameter B (left-right thickness asymmetry)
2. Thermal wind (warm/cold core) value for lower troposphere (900-600 hPa)
3. Thermal wind value for upper troposphere (600-300 hPa)

Column 25: Presence of a warm core. In this sample it is "U", which stands for "undeter-
mined", meaning the warm core check is not performed. When the warm core
check is performed, this field will be either ’Y’ or ’N’, indicating whether the
warm core is identified or not

Column 26: storm moving direction (in degrees)
Column 27: storm moving speed (in tenths of ms−1)
Column 28: mean 850 hPa vorticity (s−1x10e5)
Column 29: max (gridpoint) 850 hPa vorticity (s−1x10e5)
Column 30: mean 700 hPa vorticity (s−1x10e5)
Column 31: max (gridpoint) 700 hPa vorticity (s−1x10e5)

127

C. Sample GFDL Vortex Tracker Namelist

A sample of the vortex tracker output fort.74 is listed below:

AL, 09, 2011082312, 03, HCOM, 000, 204N, 706W, 87, 978, XX, 91, IKE, 0, 23, 34, 16, 5, 0, 0, 0, 2039N, 7062W
AL, 09, 2011082312, 03, HCOM, 006, 208N, 714W, 94, 965, XX, 91, IKE, 0, 28, 42, 25, 8, 0, 0, 0, 2081N, 7142W
AL, 09, 2011082312, 03, HCOM, 012, 209N, 722W, 93, 964, XX, 91, IKE, 0, 28, 44, 25, 8, 0, 0, 0, 2088N, 7220W
AL, 09, 2011082312, 03, HCOM, 018, 213N, 728W, 99, 962, XX, 91, IKE, 0, 25, 46, 19, 9, 0, 0, 0, 2131N, 7276W
AL, 09, 2011082312, 03, HCOM, 024, 218N, 733W, 92, 962, XX, 91, IKE, 0, 27, 50, 23, 8, 0, 0, 0, 2179N, 7333W
AL, 09, 2011082312, 03, HCOM, 030, 225N, 741W, 97, 959, XX, 91, IKE, 0, 28, 51, 26, 9, 0, 0, 0, 2245N, 7415W
AL, 09, 2011082312, 03, HCOM, 036, 231N, 749W, 95, 961, XX, 91, IKE, 0, 29, 51, 27, 11, 0, 0, 0, 2314N, 7488W
AL, 09, 2011082312, 03, HCOM, 042, 239N, 756W, 100, 956, XX, 91, IKE, 0, 29, 54, 28, 11, 0, 0, 0, 2387N, 7562W
AL, 09, 2011082312, 03, HCOM, 048, 248N, 762W, 107, 953, XX, 91, IKE, 0, 30, 58, 30, 14, 0, 0, 0, 2479N, 7621W
AL, 09, 2011082312, 03, HCOM, 054, 258N, 767W, 111, 949, XX, 91, IKE, 0, 32, 62, 34, 16, 0, 0, 0, 2575N, 7668W
AL, 09, 2011082312, 03, HCOM, 060, 267N, 770W, 113, 946, XX, 91, IKE, 0, 33, 65, 38, 18, 0, 0, 0, 2668N, 7696W
AL, 09, 2011082312, 03, HCOM, 066, 277N, 773W, 111, 944, XX, 91, IKE, 0, 34, 67, 40, 21, 0, 0, 0, 2769N, 7731W
AL, 09, 2011082312, 03, HCOM, 072, 286N, 774W, 114, 944, XX, 91, IKE, 0, 35, 68, 42, 23, 0, 0, 0, 2864N, 7742W
AL, 09, 2011082312, 03, HCOM, 078, 296N, 775W, 113, 941, XX, 91, IKE, 0, 35, 73, 43, 22, 0, 0, 0, 2959N, 7753W
AL, 09, 2011082312, 03, HCOM, 084, 304N, 774W, 107, 944, XX, 91, IKE, 0, 35, 74, 43, 22, 0, 0, 0, 3037N, 7742W
AL, 09, 2011082312, 03, HCOM, 090, 312N, 774W, 108, 941, XX, 91, IKE, 0, 36, 77, 46, 23, 0, 0, 0, 3119N, 7745W
AL, 09, 2011082312, 03, HCOM, 096, 320N, 773W, 107, 942, XX, 91, IKE, 0, 37, 79, 51, 26, 0, 0, 0, 3198N, 7728W
AL, 09, 2011082312, 03, HCOM, 102, 328N, 772W, 111, 938, XX, 91, IKE, 0, 38, 78, 53, 28, 0, 0, 0, 3278N, 7719W
AL, 09, 2011082312, 03, HCOM, 108, 336N, 769W, 111, 937, XX, 91, IKE, 0, 37, 76, 51, 30, 0, 0, 0, 3360N, 7690W
AL, 09, 2011082312, 03, HCOM, 114, 347N, 766W, 106, 939, XX, 91, IKE, 0, 35, 68, 43, 21, 0, 0, 0, 3473N, 7664W
AL, 09, 2011082312, 03, HCOM, 120, 361N, 764W, 90, 950, XX, 91, IKE, 0, 32, 57, 35, 10, 0, 0, 0, 3611N, 7642W
AL, 09, 2011082312, 03, HCOM, 126, 375N, 764W, 69, 957, XX, 91, IKE, 0, 27, 42, 24, 2, 0, 0, 0, 3745N, 7637W

Column 1-11: Same as fort.64
Column 12-13: fixed fields
Column 14: wind damage potential (wdp) (not computed in this version,

therefore is always zero)
Column 15: storm surge damage potential (SDP) (multiplied by 10)
Column 16-18: IKE, in terajoule, for 10 ms−1, 18 ms−1 and 33 ms−1 winds,

respectively
Column 19-21: IKE for 25-40 ms−1, 41-54 ms−1 and 55 ms−1 winds, currently

not computed, therefore are always zero
Column 22-23: vortex center position (latitude and longitude multiplied by 100)

128

	COVERS for NOAA Technical Memorandum OAR GSD 45
	HWRF_UG_v3.6a

